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Abstract

Introduction In the last decade, various Machine Learning techniques have been proposed aiming to individualise the dose
of anticancer drugs mostly based on a presumed drug effect or measured effect biomarkers. The aim of this scoping review
was to comprehensively summarise the research status on the use of Machine Learning for precision dosing in anticancer
drug therapy.

Methods This scoping review was conducted in accordance with the interim guidance by Cochrane and the Joanna Briggs
Institute. We systematically searched the databases Medline (via PubMed), Embase and the Cochrane Library for research
articles and reviews including results published after 2016. Results were reported according to the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) checklist.

Results A total of 17 relevant studies was identified. In 12 of the included studies, Reinforcement Learning methods were
used, including Classical, Deep, Double Deep and Conservative Q-Learning and Fuzzy Reinforcement Learning. Fur-
thermore, classical Machine Learning methods were compared in terms of their performance and an artificial intelligence
platform based on parabolic equations was used to guide dosing prospectively and retrospectively, albeit only in a limited
number of patients. Due to the significantly different algorithm structures, a meaningful comparison between the various
Machine Learning approaches was not possible.

Conclusion Overall, this review emphasises the clinical relevance of Machine Learning methods for anticancer drug dose
optimisation, as many algorithms have shown promising results enabling model-free predictions with the potential to max-
imise efficacy and minimise toxicity when compared to standard protocols.

pharmacokinetic (PK) measurements. Based on 86 stud-

Machine Learning has great potential to advance PK/PD-
guided dosing strategies in oncology.

Reinforcement Learning methods are increasingly devel-
oped for automated dose individualisation of anticancer
drugs.

1 Introduction

Recently, various Machine Learning (ML) techniques have
been explored that aim to individualise dosing, based on
a presumed drug effect, measured effect biomarkers or
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ies identified in a pilot literature search from our working
group, the most frequently used algorithms for dose opti-
misation were Decision Trees and their ensembles, such as
Random Forests and Boosting Algorithms, Support Vec-
tor Machines and Artificial Neural Networks. Specifically,
Reinforcement Learning (RL) has played a significant role.
Mostly, the identified algorithms aided in the dose individu-
alisation of anticoagulants, immunosuppressants and anti-
biotics [1-5]. Furthermore, ML was applied to problems
in pharmacometrics including PK and pharmacodynamic
(PD) modelling and simulation, model-informed precision
dosing, and systems pharmacology [6]. In radiotherapy,
ML methods were successfully implemented for synthetic
computed tomography (sCT) image generation [7-9], auto-
segmentation to achieve a more accurate tumour delineation
[10-12] and knowledge-based treatment planning, with the
aim to deliver an acceptable dose into the target organ while
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sparing surrounding organs at risk [13—15]. While much has
already been published on radiotherapy dose optimisation,
there is currently no review comprehensively summarising
the research status on the use of ML for precision dosing
in anticancer drug therapy. As predicting and improving
treatment outcomes through treatment individualisation is
a major goal and challenge in oncology, and ML can be an
asset to this goal, we conducted a scoping review on this
topic to summarise the applications and discuss their ben-
efits and limitations. Most publications we identified were in
the field of RL, highlighting the importance of this method
for dose optimisation in oncology. Therefore, this review
mainly focuses on RL methods.

2 Methods

This scoping review was conducted in accordance with
the interim guidance by Cochrane and the Joanna Briggs
Institute [16]. Results were reported based on the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
extension for Scoping Reviews (PRISMA-ScR) checklist
[17]. Studies published from 2016, that is, after the open-
source launch of the ML framework TensorFlow, were
included. This library, which was developed by the Google-
Brain-Team, encouraged many scientists, including life sci-
ence researchers, who were new to ML, to join this research
field. PyTorch, which is another popular ML framework
developed by Meta Al (then Facebook Inc.), was initially
released in September 2016. We hypothesized that the devel-
opment of these open-source libraries and their subsequent
ubiquitous adoption meant that results published before and
after 2016 would probably not be comparable. The databases
Medline (via PubMed), Embase and the Cochrane Library
were searched for primary trials and evidence syntheses on
3 March 2023.

Table 1 Predefined inclusion and exclusion criteria

The search strategy for primary studies and the search
strategy for evidence syntheses are shown in Online
Resources 1 and 2, respectively. Only studies in English
language that focused on dose optimisation of anticancer
drugs in human patients and reported quantitative results
on model performance, dose optimisation parameters and/or
resulting doses were included. The full inclusion and exclu-
sion criteria are shown in Table 1. Two authors (OT and
ME) independently screened titles and abstracts of identified
records and retrieved full-text articles of potentially eligi-
ble studies, using the automated tool Rayyan for screening
[18]. All reviews and included publications were thoroughly
searched for further eligible studies (citation searching).
Subsequently, they independently assessed eligibility of the
remaining records using the pre-defined eligibility criteria.
In the case of disagreement, a third author (DV) adjudicated.
Studies on radiotherapy dose optimisation were excluded at
the end of the screening process.

Afterwards, study methods, population specifics and
outcomes, as well as conflict of interest and reproducibility
parameters (whether data, code and model topology were
reported) were extracted by the first author (OT) using a
standardised form. Another author (LMK) independently
reviewed the data extraction. In addition, a non-systematic
keyword search without double-screening was carried out in
PubMed, Embase and ResearchGate on 21 February 2024
using the keywords from the original search strategy and
the keyword "Reinforcement Learning" because most of the
studies identified in the systematic search were located in
this field. This was done to avoid missing the most recent
publications. The objectives, inclusion criteria and methods
for this scoping review were specified in advance and docu-
mented in a protocol including documentation of protocol
adjustments [19]. As per protocol, if the original code and/
or dataset were not reported, the authors were contacted
between January and February 2024, and the obtained

Inclusion criteria

Exclusion criteria

Study designs Randomised controlled trials

Observational studies (case control, cohort, cross-sectional)

Prospective and retrospective design

Commentaries, editorials, empirical studies and
other publications without quantitative study
results

Non-comparative/non-controlled single-arm studies with any number of

participants
Case studies with any number of participants

Rapid/Living/Scoping/SystematicReviews/Meta-analyses

Modelling studies
Population Patients treated for any type of cancer
Setting Studies reported from 01/2016 in English language
Interventions ~ Machine Learning algorithms aiming at optimising the dose of anticancer
drug agents
Outcomes Quantitative results on model performance and dose optimisation parameters

and/or resulting doses
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information was assessed and added. Finally, the search
results were displayed in a flowchart according to PRISMA
criteria [20] (Fig. 1) and the results were reported in com-
prehensive tables which display all relevant study charac-
teristics (Tables 2, 3) and quality criteria (Online Resources
3 and 4).

3 Results

A total of 2024 publications was found in databases and
a further 7 were identified through citation searching of
reviews (Fig. 1). Thirty-one duplicates (8 identified by
automatic deduplication) and 7 publications not written in
English or published before 2016 were excluded and 1986
publications were screened. After title and abstract screen-
ing, 191 studies remained for full text screening, of which
153 could be retrieved. Among these studies, 14 focused
on dose optimisation in drug therapy and were included in
this review. The other studies were excluded because they
focussed on radiotherapeutic dose optimisation (n = 111),
did not focus on dose optimisation (n = 21), did not report
results (n = 9) or did not apply ML methods (n = 5). Three
studies, published after the systematic search was conducted,
were additionally identified in a non-systematic search on

21 February 2024. Finally, 17 studies were included in this
review and the results were categorised according to the
methods used (RL methods, classical ML and Phenotypic
Personalised Medicine).

An overview of the identified methods can be found in
Fig. 2 and short summaries of the most important study fea-
tures and quality criteria are depicted in Tables 2 and 3 and
Online Resources 3 and 4, respectively.

3.1 Reinforcement Learning

From the 17 studies that were included in the review, 12 used
RL for drug dose optimisation. Reinforcement Learning is
a ML technique, in which an agent learns in an interactive
environment by trial and error using feedback (reward or
punishment) from its own actions and experiences, in a goal-
driven manner. The goal in RL is to find a suitable action
model, which maximises the total cumulative reward. For
example, in the context of oncology, one might typically
aim to alter a chemotherapeutic regimen to reach maximal
tumour shrinkage. In many of the identified publications, the
model parameters were perturbed to assess robustness of the
model, which we have summarised in Table 2.

Additional to the studies included in this review, we iden-
tified two comprehensive reviews that summarised literature

{ Identification of studies via datab and registers [ Identification of studies via other methods ]
—
Records removed before : i .
c Records identified from: screening: RECO.I'dS. identified .from' _
S _ > Citation searching (n = 7)
= Databases (n = 2024) Duplicate records removed :
© _ v Non-systematic keyword
S - PubMed (n =1724) > (n=23) °
= _ > . search in PubMed, Embase
£ - Embase (n =238) Records automatically and ResearchGate (n = 3)
K] - Cochrane Library (n =55) deduplicated (n = 8)
= Records removed that were
published before 2016 or not
) i in English (n=7)
—
Records screened Records excluded
F——>>
(n =1986) (n=1795)
Reports sought for retrieval o | Reports not retrieved Reports sought for retrieval | Reports not retrieved
o (n=191) "l (n=38) (n=10) 7l (n=0)
c
3
e
: ! |
(2]
P Reports excluded: TR .
Reports assessed for eligibility o D P d Reports assessed for eligibility o | Reports excluded:
(n = 153) > oes not focus on dose (n = 10) > (n=0)
optimisation (n = 21)
Results not reported (n = 9)
Does not use Machine
Learning (n = 5)
Radiotherapeutic dose
optimisation (n = 111)

A4

Studies included in review
(n=17)

- 7 from systematic search

- 7 from citation searching

- 3 from non-systematic
keyword search

Fig. 1 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 flow diagram including searches of databases,

registers and other sources [20]
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Fig.2 Pie chart of identified

studies. The identified studies

comprise 12 Reinforcement

Learning studies, three Classi-

cal Machine Learning studies

and two Phenotypic Personal- 2
ised Medicine studies. The 12
Reinforcement Learning studies

include four Classical Q-Learn-

ing, four Deep Q-Learning, two

Fuzzy Reinforcement Learning 3
and two other studies

specifically on RL strategies in different steps of cancer ther-
apy planning [21, 22]. Additionally, a similar review sum-
marised the application of ML to facilitate Model-Informed-
Precision-Dosing (MIPD) and Therapeutic Drug Monitoring
[23].

3.1.1 Classical Q-Learning

In many identified studies, Q-Learning and related meth-
ods were applied for dose optimisation. Q-Learning is an
off-policy RL, meaning that the target value can be com-
puted without considering how the experience was generated
[24]. Every RL algorithm strives to find a balance between
explorative (novel, but possibly better action) and exploita-
tive (action the algorithm knows will bring maximal short-
term reward) actions. In Q-Learning, usually the optimal
action is selected corresponding to small values of € (prob-
ability of choosing to explore), meaning that the algorithm
mostly acts upon prior knowledge (exploitation) and rarely
selects actions randomly (exploration). This is referred to
as an “epsilon-greedy” strategy. The Q-values, which are
used to determine how good an action taken at a particular
state is, are in tabular form in classical Q-Learning. They
are updated based on the reward received for a state-action
pair and the estimated value of the next state. By repeatedly
updating the Q-values based on the observed rewards, the
agent can converge to an optimal policy that maximises the
cumulative reward over time. Other possibilities to explore
or evaluate action space are, for example, Monte Carlo Tree
Search and temporal difference.

Yazdjerdi et al. proposed a Q-Learning approach to opti-
mise intravenous endostatin therapy for a simulated pop-
ulation [25]. The model aimed to reduce the tumour size
under the threshold size for tumour angiogenesis (1-2 mm
in diameter) [26]. A dynamic tumour growth model was
implemented on virtual patients that calculated changes in
tumour volume, endothelial volume and drug concentra-
tion. The Q-Learning approach was compared with other
control strategies proposed in literature, using the same

Reinforcement Learning

Classical Machine
Learning Methods

Phenotypic Personalised
4 Medicine

\ 4

Classical Q-Learning
= Deep Q-Learning

= Fuzzy Reinforcement
Learning

Other

mathematical model of tumour growth dynamics [27, 28]
and outperformed them by achieving a smaller final tumour
volume with a halved and therefore more realistic drug dose
in a shorter time. Similarly, with a reduced maximum dose,
the total amount of drug administered, the maximum dose,
and the tumour volume could all be decreased.

A similar approach was applied to optimise the temozolo-
mide (TMZ) schedule of simulated glioblastoma multiforme
patients [29]. They proposed a hybrid modelling framework,
which integrated a multi-scale cellular automation model of
glioblastoma growth with a RL optimising agent [30]. The
model was applied to a synthetic glioblastoma patient weigh-
ing 70 kg treated with TMZ with different tumour character-
istics. Compared to the classical 7/14 regimen (7 days on/7
days off), the RL model was more effective in reducing the
tumour mass. However, it should be noted that the study
group did not account for concomitant radiotherapy and only
simulated a tumour size of 1 mm?>, whereas glioblastoma
can grow up to 6 cm in diameter before posing a threat to a
patient's life.

Most recently, Q-Learning was also applied to personalise
erdafitinib protocols in patients with metastatic urothelial
carcinoma [31]. Only doses available in practice could be
administered and the aim was to maintain serum phosphate
concentrations within a target range. A population of 141
simulated patients [32, 33] consisting of complete and par-
tial responders was assessed at the second week of treatment,
the end of the fourth treatment month and at the end of treat-
ment. The results were compared to the U.S. Food and Drug
Administration (FDA)-approved adaptive dosing protocol
for erdafitinib [34]. At each timepoint, the model-based indi-
vidual protocols resulted in a higher percentage of patients
with serum phosphate levels within the proposed range. The
RL model recommended lower starting doses than proposed
in the FDA protocol and gradual dose increasing.

Padmanabhan et al. applied Q-Learning to develop an
optimal controller for non-specific intravenous cancer chem-
otherapy drug dosing [35-37]. A non-linear four-state model
[38, 39] was used to represent tumour growth. It captured the
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logistic growth of the tumour, the immune response to the
chemotherapy, cell proliferation and death. The aim of the
controller was to optimise the dose to maximise the desired
tumour shrinkage and minimise drug-induced side effects for
different simulated patient groups, consisting of adults, preg-
nant women and multimorbid elderly patients. The result-
ing algorithm successfully reached the desired state for each
patient group, on average after 28 days of simulation.

3.1.2 Deep Q-Learning

In Deep Q-Networks and Deep Double Q-Learning, optimal
response functions are represented as Deep Neural Networks
with parameters (or weights) instead of a table as in classical
Q-Learning. These advancements can therefore capture big-
ger datasets and cases. An advanced Deep Double Q-Learn-
ing can avoid the overly optimistic Q-value estimates seen in
Deep Q-Learning or simple Q-Learning by separating action
choice and action reward in the calculations of the Q-value,
resulting in more accurate optimisation [40].

Yauney et al. applied Deep Q-Learning to guide treat-
ment of glioma with temozolomide or a combination of
procarbazine, 1,2-chloroethyl-1-nitrosurea and vincristine
[41]. The Deep Q-Learning algorithm interacted with an
environment of tumour growth inhibition [42] to select the
appropriate dose and minimise the tumour size in 50 simu-
lated patients for each regimen. Experiments, in which the
RL agent could treat different simulated patients indepen-
dently (patient-based experiments) and in which the agent
had to administer the same dose to each patient (trial-based
experiments) as well as experiments with fixed or variable
possible doses, were conducted to compare the proposed
dosing policies with clinical trial dosing regimens [42—44].
The results showed that the proposed dosing policies were
generally equally effective at reducing the mean tumour
diameter as clinical trial regimens. However, when the RL
algorithm significantly reduced the administered dose (to
25%), the resulting tumour volume was larger than if a clini-
cal trial regimen was applied. Yauney et al. concluded that a
reward function based on reducing tumour size leads to dose
regimens similar to those proposed in clinical trials, which
are also guided by this goal.

In a general setting, Deep Double Q-Learning was applied
to derive dosing schedules for an unspecified chemotherapy
drug [45]. A total of 200 virtual trial patients was simulated
using a model of breast and ovarian cancer growth in mice
[46, 47]. The aim was to find an optimal dosing schedule to
minimise tumour cell counts while reducing toxicity, using
information on relative bone marrow density. During train-
ing, the Deep Double Q-Learning agent was unaware of
patient-specific values and was only provided with average
values. Drug doses and times were discretised. After enrich-
ing the model with information on relative bone marrow
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density, it was compared to a traditional nominal optimal
controller and a nearest testing neighbour optimal controller.
When tested on unknown patients, the RL agent schedules
were closer to the theoretical optimum compared to the other
controllers. The benefit of using RL increased with the level
of parameter perturbation.

With the similar aim to maximise efficacy and reduce
toxicity, Huo et al. used Multi-Objective Deep Q-Network
based on Multi-Indicator Experience Replay (MIER-MO-
DQN), to optimise a general chemotherapy schedule [48].
The number of effector immune cells and the administered
drug dose needed to be maintained, while minimising the
number of tumour cells. Two patients in good and in poor
general condition were simulated, choosing a higher immune
cell threshold for the latter. To quantify the value of each
possible action of the model, a composite score was used,
consisting of the temporal difference error, the information
entropy, and the number of replays and repetitions within
the optimisation. Each action was weighted to correct for
divergence. The MIER-MO-DQN was compared with the
conventional Deep Q-Network (DQN) approach and the Lin-
ear Weighted Sum Function-based DQN (W_DQN). The
algorithms were compared in terms of changes in tumour
cell, immune cell and circulating lymphocyte counts and
drug concentrations. For both patients, MIER-MO-DQN
performed best with a low tumour cell count, sufficiently
high immune cell count and no restrictions violated.

A model-free Deep Reinforcement Learning-based
method for chemotherapy drug dosing was proposed [49]
and compared to a classical Q-Learning method described
in Sect. 3.1.1 [35] and non-RL controllers. A non-linear
pharmacological cancer model served as the environment
for simulating patient data and cancer dynamics. The struc-
tural model described by Padmanabhan et al. was applied
[35] and state variables and control actions were modelled
continuously to avoid expert-guided discretisation [35]. The
proposed Deep RL method showed a similar trend to the
classical Q-Learning method [35] in several respects, but
with a shortened time to reach the target state and lower drug
exposure. Compared to non-RL controllers, the total admin-
istered dose was again reduced, except when compared to a
state feedback control strategy.

3.1.3 Fuzzy Reinforcement Learning

Fuzzy Reinforcement Learning (FRL), a fuzzy extension of
Q-Learning, combines fuzzy systems as a comprehensive
approximator with the principles of RL. Fuzzy logic is an
approach to variable processing based on "degrees of truth"
rather than binary encoding. Fuzzy Reinforcement Learn-
ing is especially useful if data, goals and constraints to the
model are fuzzy in nature. In the context of dose individu-
alisation in oncology, this could mean not only classifying
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a patient as overdosed but specifying a degree of overdosing
and formulating rules accordingly.

An adaptive controller based on a RL scheme with two
fuzzy rules, was used to optimise an unspecified chemo-
therapy treatment regimen by Treesatayapun et al. [50, 51].
Four patients with different responses to drug therapy were
simulated according to parameters specified in oncologic
studies [52-55]. The goal of the model-free adaptive con-
troller was to achieve complete eradication of tumour cells.
The dynamics of the cell populations (normal cells, immune
cells and tumour cells) was reformulated by pseudo-partial
derivatives as drug administration and tumour cell popula-
tion. Fuzzy rules were applied to if-then rules imposed by
human knowledge according to PK and PD behaviour (for
example, “if the tumour cell population is high, the drug
administration must be increased’). The results showed that
the proposed algorithm matched different patient needs,
with more sensitive patients receiving a lower dose. Delay-
ing treatment resulted in a marked shift in the concentration
curves as expected.

Moreover, a similar approach was proposed by Alsaadi
et al. [56]. In contrast to Treesatayapun et al. [50, 51],
young and elderly patients were simulated with different
parameter values with or without consideration of param-
eter uncertainty. The aims were to achieve a desired number
of tumour cells (T = 0) for young patients and to control
normal and tumour cell counts for the elderly to avoid tox-
icity. A fuzzy RL-based state-action-reward-state-action
(SARSA) algorithm was used to control the tumour entity
by chemotherapy, modelled by a Caputo-Fabrizio fractional
order model [39]. Fuzzy logic was applied to enhance the
controller’s ability to handle uncertainty and imprecision in
the system. For both patient cases, the algorithms achieved
their respective goals. The proposed method was superior to
simple Q-Learning in terms of efficiency, prediction error
and drug dosage.

3.1.4 Other Reinforcement Learning Approaches

A combined Bayesian Data Assimilation-Reinforcement
Learning (DA-RL) algorithm was used to guide model-
informed precision dosing of paclitaxel in simulated non-
small cell lung cancer (NSCLC) patients [57]. The goal of
the algorithm was to maintain patients’ neutropenia grades
between 1 and 3 to achieve optimal efficacy and minimal
toxicity. A Monte Carlo Tree Search was used with an
upper confidence bound applied to the trees. In total, 1000
patients were simulated according to values reported in a
clinical study [58]. Standard dosing, PK-guided dosing,
maximum-a-posteriori (MAP)-guided dosing and Bayesian
data assimilation (DA) with and without RL were com-
pared. It was shown that PK-guided dosing performed

better than standard dosing, but with an increased inci-
dence of grade 0 neutropenia as an indicator of non-effi-
cacy. With MAP-guided dosing, the incidence of grade 4
neutropenia increased in a cumulative trend. Compared to
PK-guided dosing, Bayesian DA with or without RL was
able to significantly minimise the percentage of patients
in neutropenia grades 0 and 4. Furthermore, the incidence
of grade 0 and 4 neutropenia was significantly reduced in
later cycles, highlighting the critical role of individualised
uncertainty quantification. Maier et al. suggested that the
small differences observed between DA with and without
RL could be related to the different weighting of levels 0
and 4 in the respective reward functions [57]. They postu-
lated that DA with RL may have great potential for long-
term optimisation in a delayed-feedback environment and
the integration of multiple endpoints.

On the other hand, Shiranthika et al. applied Conserva-
tive Q-Learning to optimise treatment regimens using
a supervised optimal chemotherapy regimen (SOCR)
approach [59]. Conservative Q-Learning is postulated to
deal with possible overestimation losses better than simple
Q-Learning. The algorithm was applied to 40 retrospec-
tive patients with stage 4 colon cancer receiving first-line
chemotherapy based on bevacizumab or cetuximab. The
reward function included changes in tumour size, patient
weight and drug response, overall side effects and patient
death. Proposed schedules were monitored by considering
oncologists’ previous treatment decisions and an adjust-
ment factor of 0.4 was chosen to mitigate discrepancies
(60% of drug doses chosen by SOCR and 40% chosen
by experts). Proposed RL schedules were compared to
actual prescribed schedules for six randomly selected
bevacizumab patients. The RL schedules were shown to
be consistent between cycles. Root mean squared error
(RMSE) differences were acceptable and comparatively
small. As a limitation, the reward function could be made
even more accurate if it included both short-term and
long-term factors according to the authors. In addition,
they sometimes had to extrapolate tumour sizes and noted
that weight and side effects were the only indicators of a
patient's condition.

3.2 Methods Other Than Reinforcement Learning

In five studies, methods other than RL were used, includ-
ing classical ML approaches and Phenotypic Personalised
Medicine (Table 3).

3.2.1 Classical ML Approaches

Aiming at predicting response to platinum-based dou-
blet chemotherapy to optimise regimens in advanced
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non-resectable NSCLC patients, Koztowska et al. proposed
a computational platform combining ML with a mecha-
nistic mathematical model using data from 42 NSCLC
patients [60]. The mathematical model was an extension of
a metastatic relapse model [61] calibrated with a multivari-
ate Gaussian mixture model estimated via an expectation-
maximisation method. It included cancer cells sensitive and
resistant to platinum-based chemotherapy and modelled
their competition for resources. After predicting the response
to chemotherapy, different schedules including applying the
maximum tolerated dose and metronomic therapy, both with
and without drug holidays, were compared. If competition
between sensitive and resistant cells was low, there was no
difference between schedules with or without drug holidays.
However, if competition was assumed to be high, the best
outcome occurred in schedules including drug holidays, as
the number of drug-sensitive cells increased during that
time.

In order to predict optimal lapatinib treatment regimens
in breast cancer patients, Yu et al. applied a sequential for-
ward-selection algorithm based on random forests for feature
selection and different ML algorithms for treatment selection
[62]. Data were retrospectively collected from 149 HER2(+)
breast cancer patients who received either regimens includ-
ing 1000 mg or 1250 mg of lapatinib. The outcome vari-
able was the initial dose regimen of lapatinib converted to a
binary variable. A sequential forward selection (SFS) algo-
rithm based on a Random Forest was used to select the most
influential features. In the next step, different algorithms
(Table 3) were used for dose regimen prediction and com-
pared for their predictive ability. The actual dose adminis-
tered to the patient was used as the reference. The four most
important features identified by the SFS algorithm were
weight, number of prior chemotherapy treatments, num-
ber of metastases and especially the underlying treatment
protocol. The most accurate regimen prediction algorithm
was TabNet (Deep Neural Network for structured tabular
data). Both regimens could be predicted with an accuracy
of over 80%. The main limitation of the study according to
the authors was the limited sample size.

Assessing exposure-effect relationships of cisplatin
in head and neck cancer patients, Cauvin et al. compared
different ML approaches [63]. Data were retrospectively
collected from 80 patients with stage 3—4 disease. Treat-
ment response was assessed after 12 weeks of treatment
and defined according to RECIST 1.1 criteria [64]. Patients
were divided into responders and non-responders. Nephro-
toxicity was considered the only dose-limiting toxicity and
was reported according to the CTCAE grading [65]. Phar-
macokinetics was assumed to follow a three-compartment
model and exposure parameters were estimated. In the next
step, different ML algorithms (Supplementary Table 3) were
compared to identify the exposure parameter most strongly
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associated with response and an optimal therapeutic range
was identified by Tree-structured Parzen estimation. A theo-
retical dose proposal for the next chemotherapy cycle was
calculated using the Kinetic Pro V1.0.3 software IMMPS,
Paris, France) by simulating expected cisplatin concentra-
tions using PK parameters. Finally, the actual and model-
guided dosing were compared in terms of compliance with
the proposed therapeutic range and reported toxicity and
efficacy. The most accurate algorithm for describing the rela-
tionship between exposure parameters and outcome was the
Generalised Linear Model (GLM) with an accuracy of 0.71
for outcome prediction. Peak plasma concentration (C,,,,,)
was found to be most useful to guide dosing and a range was
proposed. Following model-guided dosing, most patients
would have been treated more adequately concerning the
target range.

3.2.2 Phenotypic Personalised Medicine Case Studies

CURATE.AI is an artificial intelligence platform used to
correlate drug dose inputs with efficacy or toxicity outputs
by parabolic equations to guide precision dosing [66]. The
phenotypic map generated by the algorithm can implicitly
incorporate influential mechanistic components such as dis-
ease biology, genetics or PK without explicit knowledge and
the need for assumptions.

CURATE.AI has so far been used to retrospectively guide
maintenance therapy in two paediatric patients with stand-
ard-risk acute lymphoblastic leukaemia on either four- or
two-drug maintenance therapy [67]. It aimed at optimising
treatment by maintaining absolute neutrophil counts (ANCs)
and platelet counts within suitable ranges and was compared
to the actual prescribed doses. The results of the case study
showed that CURATE.AI resulted in better ANC ranges in
both patients studied for the four- and two-drug maintenance
regimens compared to the prescribed regimens. Platelet
counts were within range for both strategies. In addition,
the dose suggested by CURATE.AI was usually lower than
the actual prescribed dose.

Furthermore, the CURATE.AI platform was used to pro-
spectively guide the dosing of a novel bromodomain inhibi-
tor (ZEN-3694) and enzalutamide in a Phase 1b/2a safety
and tolerability trial [68]. The drugs were administered to an
enzalutamide-naive 82-year-old male patient with metastatic
castration-resistant prostate cancer and alleviated prostate-
specific antigen (PSA) levels despite previous abiraterone
chemotherapy. For the first 6 months of treatment, the dose
was guided by a physician only; the following 6 months,
CURATE.AI recommendations were considered. Patient
PSA levels were used as the primary marker of clinical activ-
ity to guide dosing. During the physician-guided phase, the
patient's PSA level and the size of the target lesion already
decreased significantly after dose reductions of both drugs.
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At the end of CURATE.Al-guided dosing, the patient’s PSA
level dropped even further. Overall, the implementation of
CURATE. Al resulted in a durable response using a reduced
dose of ZEN-3694, although ZEN-3694 was found to be
a key modulator of treatment response. However, a major
limitation of both case studies on CURATE.AI is the limited
number of patients included.

4 Discussion

In general, 17 studies on the use of ML methods for antitu-
mour therapy optimisation could be identified in the litera-
ture search, most of which applied RL. Within the identified
RL studies, epsilon-greedy strategies have been used fre-
quently. While this strategy performs particularly well in the
short term, less greedy strategies may be interesting in the
long term, which stresses more on exploration [57]. More
recent studies have used more advanced Q-Learning strate-
gies in which optimal response functions are represented
as Deep Neural Networks instead of a table, making them
potentially more suitable for complex scenarios in oncol-
ogy. In the publications described, classical Q-Learning was
compared with a FRL-based control method (SARSA algo-
rithm) [56] and a DQN [49] with the novel methods showing
superiority in terms of maximising the reward and minimis-
ing therapy duration. In addition, when a Multi-Objective
Deep Q-Network was compared with a conventional DQN
approach, combining multiple objectives proved to be ben-
eficial [48]. Generally speaking, algorithms performed espe-
cially well when they considered both efficacy and toxic-
ity within their reward functions [31, 48, 57]. Moreover, it
should be emphasised that the acceptance of using a ML
method to optimise cancer treatment schedules may increase
if patient-relevant parameters and expert opinions are con-
sidered [59].

Other than RL, a few identified studies compared vari-
ous classical methods in terms of their predictive abilities.
In these studies, TabNet, which is a Deep Neural Network
designed for tabular data [62], and a GLM [63] demon-
strated superior performance compared to other methods
for their respective tasks. However, since the studies vastly
differ in their therapy context and the tasks the algorithms
were applied for, they are difficult to compare. One study
combined ML methods with mathematical models, which
led to promising results [60]. Furthermore, the Al platform
CURATE.AI, which was used to optimise combination
therapy simultaneously, appears to be interesting for clini-
cal practice, as anticancer therapy is usually a combination
of drugs [67, 68]. However, it has only been tested on very
few cancer patients so far.

Although model and environment parameters were often
reported for the RL algorithms, resulting doses were more
often reported for the other algorithms. In future research,
resulting doses and accuracy measures (if applicable) should
be reported along with important hyperparameters or opti-
mally the whole code. Due to the significantly different algo-
rithm structures, the performance of RL and non-RL meth-
ods cannot be compared. Furthermore, if direct comparisons
were not made for the specific example, it is not possible to
directly compare different RL or non-RL methods among
each other, respectively. However, it can be stated that RL
algorithms are applicable for more complex tasks and can be
used for dynamic dose adjustments in ongoing or retrospec-
tive therapies. Therefore, research might focus more on RL
in the future and ways to apply it in a clinical setting.

While some studies guided dosing of individual antitu-
mour drugs, other studies dealt with the method itself and
are yet to be made applicable in pracitice. However, clinical
utility is yet to be proven for all algorithms described in this
review. Future work should focus on combining efficacy and
toxicity measures and patient-relevant parameters within the
reward, as this approach should yield the most promising,
acceptable and clinically relevant results. In clinical routine,
where the focus is not only on survival but also on maintain-
ing quality of life in chronic disease, there is no point in
proposing regimens that improve efficacy but do not also
ensure that toxicity is not worsened. Moreover, the proposed
dosing regimens must be practical and avoid irregularities
(therapy at inappropriate times and dates and inadequate
doses). In addition, to be closer to practice, algorithms need
to incorporate concentration-response relationships that have
been studied in humans and not just incorporate cellular
interactions. To add to their value, these algorithms should
preferably be able to optimise combination chemotherapy
regimens, as anticancer drugs are usually used jointly. Such
algorithms should then be compared with Therapeutic Drug
Monitoring or other common dosing strategies to investigate
their clinical utility in terms of maximising efficacy (e.g.,
by measuring tumour growth or assessing the incidence of
metastases) and avoiding toxicity. Adverse events should not
only be reported by the clinical staff based on the CTCAE
criteria [65] but also by the patients themselves, e.g., using
the patient-reported outcome version of the CTCAE [69].

If proven clinically useful, RL agents could potentially
change the dosing paradigms of both classical and targeted
anticancer agents, and pose an alternative to the still com-
mon fixed-dose approach [70]. In classical chemotherapy,
they could be used to minimise the number of treatment
cycles required, particularly to avoid long-term toxicity and
secondary cancers [71]. In addition, if the algorithms can
propose schedules with minimal acute adverse events, there
would potentially be fewer treatment interruptions and the
need for supplementary therapy. In the case of oral targeted
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anticancer therapy, optimised schedules could also reduce
the incidence of adverse events and improve patient adher-
ence [72]. Due to the high cost of oral targeted anticancer
drugs, rising faster than inflation [73], another useful goal
may be to minimise treatment costs by testing whether less
frequent dosing can achieve comparable outcomes. This
could enable the use of oral targeted anticancer therapy in
less wealthy countries and patient groups, thereby increasing
fairness and equity in cancer treatment. In a recently pub-
lished review on Model-Informed Reinforcement Learning
for precision dosing of different drugs, it was emphasised
that clinical knowledge and constraints need to be taken into
account to obtain useful adaptive dosing strategies and that
algorithms need to be tested prospectively and not only in
silico [74]. Additionally, the authors state that similarly to
other methods, RL dose optimisation may be suboptimal or
inefficient for patient cohorts with high inter-individual vari-
ability. In such cases, implementing the RL-based optimisa-
tion in a Bayesian fashion may be helpful [57, 74].

Overall, it is worth noting that in our literature search
we were able to identify further preprints in this area which
could not be included yet for lack of peer review. This high-
lights the importance of this area of research and that many
more studies will be published in the near future. However,
it also calls attention to the main limitation of this scoping
review: The number of studies published on this topic is
constantly increasing and there might be new eligible studies
which are not included upon publication. Additionally, only
studies reporting results were included in this review, while
there might have been further interesting methodological
publications (i.e., conference presentations) which did not
yet present final results. Direct comparisons of the methods
were mostly impossible as different methods were applied
in different therapy contexts or general settings. In addition,
because a scoping review does not assess the quality of the
evidence, it cannot assess the implications for practice or
policy.

5 Conclusions

In summary, this review provides a comprehensive over-
view on ML methods that were recently used and evalu-
ated to optimise cancer treatment dosing. Twelve of the
17 included studies used RL methods, including Classi-
cal, Deep, Deep Double and Conservative Q-Learning
and Fuzzy RL. In many cases, a tumour growth model was
proposed to describe changes in the number of tumour
cells, immune cells, healthy cells and drug concentration
during cancer therapy. In these cases, the algorithm was
mostly rewarded for minimising tumour size and for spar-
ing healthy cells. Some trials included toxicity endpoints
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and patient-relevant parameters in addition to efficacy end-
points in their approach, such as biomarker levels, changes
in tumour size, side effects and patient death. In most cases,
epsilon greedy strategies have been used. Furthermore, clas-
sical ML methods were compared in terms of their perfor-
mance, ML and mathematical modelling have been com-
bined and an artificial intelligence platform has been used
to guide dosing prospectively and retrospectively, albeit only
in very few patients. Future studies will probably continue
exploring advanced Q-Learning for dose optimisation and
consider drug efficacy, toxicity and patient-relevant param-
eters within the reward. Overall, ML methods have a great
potential for maximising efficacy and minimising toxicity
by dose optimisation when compared to standard protocols
even by model-free predictions.
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