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Abstract
Introduction  In the last decade, various Machine Learning techniques have been proposed aiming to individualise the dose 
of anticancer drugs mostly based on a presumed drug effect or measured effect biomarkers. The aim of this scoping review 
was to comprehensively summarise the research status on the use of Machine Learning for precision dosing in anticancer 
drug therapy.
Methods  This scoping review was conducted in accordance with the interim guidance by Cochrane and the Joanna Briggs 
Institute. We systematically searched the databases Medline (via PubMed), Embase and the Cochrane Library for research 
articles and reviews including results published after 2016. Results were reported according to the Preferred Reporting Items 
for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) checklist.
Results  A total of 17 relevant studies was identified. In 12 of the included studies, Reinforcement Learning methods were 
used, including Classical, Deep, Double Deep and Conservative Q-Learning and Fuzzy Reinforcement Learning. Fur-
thermore, classical Machine Learning methods were compared in terms of their performance and an artificial intelligence 
platform based on parabolic equations was used to guide dosing prospectively and retrospectively, albeit only in a limited 
number of patients. Due to the significantly different algorithm structures, a meaningful comparison between the various 
Machine Learning approaches was not possible.
Conclusion  Overall, this review emphasises the clinical relevance of Machine Learning methods for anticancer drug dose 
optimisation, as many algorithms have shown promising results enabling model-free predictions with the potential to max-
imise efficacy and minimise toxicity when compared to standard protocols.

Key Points 

Machine Learning has great potential to advance PK/PD-
guided dosing strategies in oncology.

Reinforcement Learning methods are increasingly devel-
oped for automated dose individualisation of anticancer 
drugs.

1  Introduction

Recently, various Machine Learning (ML) techniques have 
been explored that aim to individualise dosing, based on 
a presumed drug effect, measured effect biomarkers or 

pharmacokinetic (PK) measurements. Based on 86 stud-
ies identified in a pilot literature search from our working 
group, the most frequently used algorithms for dose opti-
misation were Decision Trees and their ensembles, such as 
Random Forests and Boosting Algorithms, Support Vec-
tor Machines and Artificial Neural Networks. Specifically, 
Reinforcement Learning (RL) has played a significant role. 
Mostly, the identified algorithms aided in the dose individu-
alisation of anticoagulants, immunosuppressants and anti-
biotics [1–5]. Furthermore, ML was applied to problems 
in pharmacometrics including PK and pharmacodynamic 
(PD) modelling and simulation, model-informed precision 
dosing, and systems pharmacology [6]. In radiotherapy, 
ML methods were successfully implemented for synthetic 
computed tomography (sCT) image generation [7–9], auto-
segmentation to achieve a more accurate tumour delineation 
[10–12] and knowledge-based treatment planning, with the 
aim to deliver an acceptable dose into the target organ while Extended author information available on the last page of the article
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sparing surrounding organs at risk [13–15]. While much has 
already been published on radiotherapy dose optimisation, 
there is currently no review comprehensively summarising 
the research status on the use of ML for precision dosing 
in anticancer drug therapy. As predicting and improving 
treatment outcomes through treatment individualisation is 
a major goal and challenge in oncology, and ML can be an 
asset to this goal, we conducted a scoping review on this 
topic to summarise the applications and discuss their ben-
efits and limitations. Most publications we identified were in 
the field of RL, highlighting the importance of this method 
for dose optimisation in oncology. Therefore, this review 
mainly focuses on RL methods.

2 � Methods

This scoping review was conducted in accordance with 
the interim guidance by Cochrane and the Joanna Briggs 
Institute [16]. Results were reported based on the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses 
extension for Scoping Reviews (PRISMA-ScR) checklist 
[17]. Studies published from 2016, that is, after the open-
source launch of the ML framework TensorFlow, were 
included. This library, which was developed by the Google-
Brain-Team, encouraged many scientists, including life sci-
ence researchers, who were new to ML, to join this research 
field. PyTorch, which is another popular ML framework 
developed by Meta AI (then Facebook Inc.), was initially 
released in September 2016. We hypothesized that the devel-
opment of these open-source libraries and their subsequent 
ubiquitous adoption meant that results published before and 
after 2016 would probably not be comparable. The databases 
Medline (via PubMed), Embase and the Cochrane Library 
were searched for primary trials and evidence syntheses on 
3 March 2023.

The search strategy for primary studies and the search 
strategy for evidence syntheses are shown in Online 
Resources 1 and 2, respectively. Only studies in English 
language that focused on dose optimisation of anticancer 
drugs in human patients and reported quantitative results 
on model performance, dose optimisation parameters and/or 
resulting doses were included. The full inclusion and exclu-
sion criteria are shown in Table 1. Two authors (OT and 
ME) independently screened titles and abstracts of identified 
records and retrieved full-text articles of potentially eligi-
ble studies, using the automated tool Rayyan for screening 
[18]. All reviews and included publications were thoroughly 
searched for further eligible studies (citation searching). 
Subsequently, they independently assessed eligibility of the 
remaining records using the pre-defined eligibility criteria. 
In the case of disagreement, a third author (DV) adjudicated. 
Studies on radiotherapy dose optimisation were excluded at 
the end of the screening process.

Afterwards, study methods, population specifics and 
outcomes, as well as conflict of interest and reproducibility 
parameters (whether data, code and model topology were 
reported) were extracted by the first author (OT) using a 
standardised form. Another author (LMK) independently 
reviewed the data extraction. In addition, a non-systematic 
keyword search without double-screening was carried out in 
PubMed, Embase and ResearchGate on 21 February 2024 
using the keywords from the original search strategy and 
the keyword "Reinforcement Learning" because most of the 
studies identified in the systematic search were located in 
this field. This was done to avoid missing the most recent 
publications. The objectives, inclusion criteria and methods 
for this scoping review were specified in advance and docu-
mented in a protocol including documentation of protocol 
adjustments [19]. As per protocol, if the original code and/
or dataset were not reported, the authors were contacted 
between January and February 2024, and the obtained 

Table 1   Predefined inclusion and exclusion criteria

Inclusion criteria Exclusion criteria

Study designs Randomised controlled trials
Observational studies (case control, cohort, cross-sectional)
Prospective and retrospective design
Non-comparative/non-controlled single-arm studies with any number of 

participants
Case studies with any number of participants
Rapid/Living/Scoping/SystematicReviews/Meta-analyses
Modelling studies

Commentaries, editorials, empirical studies and 
other publications without quantitative study 
results

Population Patients treated for any type of cancer
Setting Studies reported from 01/2016 in English language
Interventions Machine Learning algorithms aiming at optimising the dose of anticancer 

drug agents
Outcomes Quantitative results on model performance and dose optimisation parameters 

and/or resulting doses
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information was assessed and added. Finally, the search 
results were displayed in a flowchart according to PRISMA 
criteria [20] (Fig. 1) and the results were reported in com-
prehensive tables which display all relevant study charac-
teristics (Tables 2, 3) and quality criteria (Online Resources 
3 and 4).

3 � Results

A total of 2024 publications was found in databases and 
a further 7 were identified through citation searching of 
reviews (Fig. 1). Thirty-one duplicates (8 identified by 
automatic deduplication) and 7 publications not written in 
English or published before 2016 were excluded and 1986 
publications were screened. After title and abstract screen-
ing, 191 studies remained for full text screening, of which 
153 could be retrieved. Among these studies, 14 focused 
on dose optimisation in drug therapy and were included in 
this review. The other studies were excluded because they 
focussed on radiotherapeutic dose optimisation (n = 111), 
did not focus on dose optimisation (n = 21), did not report 
results (n = 9) or did not apply ML methods (n = 5). Three 
studies, published after the systematic search was conducted, 
were additionally identified in a non-systematic search on 

21 February 2024. Finally, 17 studies were included in this 
review and the results were categorised according to the 
methods used (RL methods, classical ML and Phenotypic 
Personalised Medicine).

An overview of the identified methods can be found in 
Fig. 2 and short summaries of the most important study fea-
tures and quality criteria are depicted in Tables 2 and 3 and 
Online Resources 3 and 4, respectively.

3.1 � Reinforcement Learning

From the 17 studies that were included in the review, 12 used 
RL for drug dose optimisation. Reinforcement Learning is 
a ML technique, in which an agent learns in an interactive 
environment by trial and error using feedback (reward or 
punishment) from its own actions and experiences, in a goal-
driven manner. The goal in RL is to find a suitable action 
model, which maximises the total cumulative reward. For 
example, in the context of oncology, one might typically 
aim to alter a chemotherapeutic regimen to reach maximal 
tumour shrinkage. In many of the identified publications, the 
model parameters were perturbed to assess robustness of the 
model, which we have summarised in Table 2.

Additional to the studies included in this review, we iden-
tified two comprehensive reviews that summarised literature 

Records identified from:
Databases (n = 2024)
- PubMed (n =1724)
- Embase (n =238)
- Cochrane Library (n =55)

Records removed before 
screening:

Duplicate records removed 
(n = 23)
Records automatically 
deduplicated (n = 8)
Records removed that were 
published before 2016 or not 
in English (n = 7) 

Records screened
(n =1986)

Records excluded
(n = 1795)

Reports sought for retrieval
(n = 191)

Reports not retrieved
(n = 38)

Reports assessed for eligibility
(n = 153)

Reports excluded:
Does not focus on dose 
optimisation (n = 21)
Results not reported (n = 9)
Does not use Machine 
Learning (n = 5)
Radiotherapeutic dose 
optimisation (n = 111)

Records identified from:
Citation searching (n = 7)
Non-systematic keyword 
search in PubMed, Embase 
and ResearchGate (n = 3)

Reports assessed for eligibility
(n = 10)

Reports excluded:
(n = 0)

Studies included in review
(n = 17)
- 7 from systematic search
- 7 from citation searching
- 3 from non-systematic 

keyword search

Identification of studies via databases and registers Identification of studies via other methods

Id
en

tif
ic

at
io

n
Sc

re
en
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g

In
cl

ud
ed

Reports sought for retrieval
(n = 10)

Reports not retrieved
(n = 0)

Fig. 1   Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 flow diagram including searches of databases, 
registers and other sources [20]
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Scoping Review of Precision Dosing in Anticancer Drug Therapy

specifically on RL strategies in different steps of cancer ther-
apy planning [21, 22]. Additionally, a similar review sum-
marised the application of ML to facilitate Model-Informed-
Precision-Dosing (MIPD) and Therapeutic Drug Monitoring 
[23].

3.1.1 � Classical Q‑Learning

In many identified studies, Q-Learning and related meth-
ods were applied for dose optimisation. Q-Learning is an 
off-policy RL, meaning that the target value can be com-
puted without considering how the experience was generated 
[24]. Every RL algorithm strives to find a balance between 
explorative (novel, but possibly better action) and exploita-
tive (action the algorithm knows will bring maximal short-
term reward) actions. In Q-Learning, usually the optimal 
action is selected corresponding to small values of ɛ (prob-
ability of choosing to explore), meaning that the algorithm 
mostly acts upon prior knowledge (exploitation) and rarely 
selects actions randomly (exploration). This is referred to 
as an “epsilon-greedy” strategy. The Q-values, which are 
used to determine how good an action taken at a particular 
state is, are in tabular form in classical Q-Learning. They 
are updated based on the reward received for a state-action 
pair and the estimated value of the next state. By repeatedly 
updating the Q-values based on the observed rewards, the 
agent can converge to an optimal policy that maximises the 
cumulative reward over time. Other possibilities to explore 
or evaluate action space are, for example, Monte Carlo Tree 
Search and temporal difference.

Yazdjerdi et al. proposed a Q-Learning approach to opti-
mise intravenous endostatin therapy for a simulated pop-
ulation [25]. The model aimed to reduce the tumour size 
under the threshold size for tumour angiogenesis (1–2 mm 
in diameter) [26]. A dynamic tumour growth model was 
implemented on virtual patients that calculated changes in 
tumour volume, endothelial volume and drug concentra-
tion. The Q-Learning approach was compared with other 
control strategies proposed in literature, using the same 

mathematical model of tumour growth dynamics [27, 28] 
and outperformed them by achieving a smaller final tumour 
volume with a halved and therefore more realistic drug dose 
in a shorter time. Similarly, with a reduced maximum dose, 
the total amount of drug administered, the maximum dose, 
and the tumour volume could all be decreased.

A similar approach was applied to optimise the temozolo-
mide (TMZ) schedule of simulated glioblastoma multiforme 
patients [29]. They proposed a hybrid modelling framework, 
which integrated a multi-scale cellular automation model of 
glioblastoma growth with a RL optimising agent [30]. The 
model was applied to a synthetic glioblastoma patient weigh-
ing 70 kg treated with TMZ with different tumour character-
istics. Compared to the classical 7/14 regimen (7 days on/7 
days off), the RL model was more effective in reducing the 
tumour mass. However, it should be noted that the study 
group did not account for concomitant radiotherapy and only 
simulated a tumour size of 1 mm3, whereas glioblastoma 
can grow up to 6 cm in diameter before posing a threat to a 
patient's life.

Most recently, Q-Learning was also applied to personalise 
erdafitinib protocols in patients with metastatic urothelial 
carcinoma [31]. Only doses available in practice could be 
administered and the aim was to maintain serum phosphate 
concentrations within a target range. A population of 141 
simulated patients [32, 33] consisting of complete and par-
tial responders was assessed at the second week of treatment, 
the end of the fourth treatment month and at the end of treat-
ment. The results were compared to the U.S. Food and Drug 
Administration (FDA)-approved adaptive dosing protocol 
for erdafitinib [34]. At each timepoint, the model-based indi-
vidual protocols resulted in a higher percentage of patients 
with serum phosphate levels within the proposed range. The 
RL model recommended lower starting doses than proposed 
in the FDA protocol and gradual dose increasing.

Padmanabhan et al. applied Q-Learning to develop an 
optimal controller for non-specific intravenous cancer chem-
otherapy drug dosing [35–37]. A non-linear four-state model 
[38, 39] was used to represent tumour growth. It captured the 

Fig. 2   Pie chart of identified 
studies. The identified studies 
comprise 12 Reinforcement 
Learning studies, three Classi-
cal Machine Learning studies 
and two Phenotypic Personal-
ised Medicine studies. The 12 
Reinforcement Learning studies 
include four Classical Q-Learn-
ing, four Deep Q-Learning, two 
Fuzzy Reinforcement Learning 
and two other studies
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logistic growth of the tumour, the immune response to the 
chemotherapy, cell proliferation and death. The aim of the 
controller was to optimise the dose to maximise the desired 
tumour shrinkage and minimise drug-induced side effects for 
different simulated patient groups, consisting of adults, preg-
nant women and multimorbid elderly patients. The result-
ing algorithm successfully reached the desired state for each 
patient group, on average after 28 days of simulation.

3.1.2 � Deep Q‑Learning

In Deep Q-Networks and Deep Double Q-Learning, optimal 
response functions are represented as Deep Neural Networks 
with parameters (or weights) instead of a table as in classical 
Q-Learning. These advancements can therefore capture big-
ger datasets and cases. An advanced Deep Double Q-Learn-
ing can avoid the overly optimistic Q-value estimates seen in 
Deep Q-Learning or simple Q-Learning by separating action 
choice and action reward in the calculations of the Q-value, 
resulting in more accurate optimisation [40].

Yauney et al. applied Deep Q-Learning to guide treat-
ment of glioma with temozolomide or a combination of 
procarbazine, 1,2-chloroethyl-1-nitrosurea and vincristine 
[41]. The Deep Q-Learning algorithm interacted with an 
environment of tumour growth inhibition [42] to select the 
appropriate dose and minimise the tumour size in 50 simu-
lated patients for each regimen. Experiments, in which the 
RL agent could treat different simulated patients indepen-
dently (patient-based experiments) and in which the agent 
had to administer the same dose to each patient (trial-based 
experiments) as well as experiments with fixed or variable 
possible doses, were conducted to compare the proposed 
dosing policies with clinical trial dosing regimens [42–44]. 
The results showed that the proposed dosing policies were 
generally equally effective at reducing the mean tumour 
diameter as clinical trial regimens. However, when the RL 
algorithm significantly reduced the administered dose (to 
25%), the resulting tumour volume was larger than if a clini-
cal trial regimen was applied. Yauney et al. concluded that a 
reward function based on reducing tumour size leads to dose 
regimens similar to those proposed in clinical trials, which 
are also guided by this goal.

In a general setting, Deep Double Q-Learning was applied 
to derive dosing schedules for an unspecified chemotherapy 
drug [45]. A total of 200 virtual trial patients was simulated 
using a model of breast and ovarian cancer growth in mice 
[46, 47]. The aim was to find an optimal dosing schedule to 
minimise tumour cell counts while reducing toxicity, using 
information on relative bone marrow density. During train-
ing, the Deep Double Q-Learning agent was unaware of 
patient-specific values and was only provided with average 
values. Drug doses and times were discretised. After enrich-
ing the model with information on relative bone marrow 

density, it was compared to a traditional nominal optimal 
controller and a nearest testing neighbour optimal controller. 
When tested on unknown patients, the RL agent schedules 
were closer to the theoretical optimum compared to the other 
controllers. The benefit of using RL increased with the level 
of parameter perturbation.

With the similar aim to maximise efficacy and reduce 
toxicity, Huo et al. used Multi-Objective Deep Q-Network 
based on Multi-Indicator Experience Replay (MIER-MO-
DQN), to optimise a general chemotherapy schedule [48]. 
The number of effector immune cells and the administered 
drug dose needed to be maintained, while minimising the 
number of tumour cells. Two patients in good and in poor 
general condition were simulated, choosing a higher immune 
cell threshold for the latter. To quantify the value of each 
possible action of the model, a composite score was used, 
consisting of the temporal difference error, the information 
entropy, and the number of replays and repetitions within 
the optimisation. Each action was weighted to correct for 
divergence. The MIER-MO-DQN was compared with the 
conventional Deep Q-Network (DQN) approach and the Lin-
ear Weighted Sum Function-based DQN (W_DQN). The 
algorithms were compared in terms of changes in tumour 
cell, immune cell and circulating lymphocyte counts and 
drug concentrations. For both patients, MIER-MO-DQN 
performed best with a low tumour cell count, sufficiently 
high immune cell count and no restrictions violated.

A model-free Deep Reinforcement Learning-based 
method for chemotherapy drug dosing was proposed [49] 
and compared to a classical Q-Learning method described 
in Sect. 3.1.1 [35] and non-RL controllers. A non-linear 
pharmacological cancer model served as the environment 
for simulating patient data and cancer dynamics. The struc-
tural model described by Padmanabhan et al. was applied 
[35] and state variables and control actions were modelled 
continuously to avoid expert-guided discretisation [35]. The 
proposed Deep RL method showed a similar trend to the 
classical Q-Learning method [35] in several respects, but 
with a shortened time to reach the target state and lower drug 
exposure. Compared to non-RL controllers, the total admin-
istered dose was again reduced, except when compared to a 
state feedback control strategy.

3.1.3 � Fuzzy Reinforcement Learning

Fuzzy Reinforcement Learning (FRL), a fuzzy extension of 
Q-Learning, combines fuzzy systems as a comprehensive 
approximator with the principles of RL. Fuzzy logic is an 
approach to variable processing based on "degrees of truth" 
rather than binary encoding. Fuzzy Reinforcement Learn-
ing is especially useful if data, goals and constraints to the 
model are fuzzy in nature. In the context of dose individu-
alisation in oncology, this could mean not only classifying 
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a patient as overdosed but specifying a degree of overdosing 
and formulating rules accordingly.

An adaptive controller based on a RL scheme with two 
fuzzy rules, was used to optimise an unspecified chemo-
therapy treatment regimen by Treesatayapun et al. [50, 51]. 
Four patients with different responses to drug therapy were 
simulated according to parameters specified in oncologic 
studies [52–55]. The goal of the model-free adaptive con-
troller was to achieve complete eradication of tumour cells. 
The dynamics of the cell populations (normal cells, immune 
cells and tumour cells) was reformulated by pseudo-partial 
derivatives as drug administration and tumour cell popula-
tion. Fuzzy rules were applied to if-then rules imposed by 
human knowledge according to PK and PD behaviour (for 
example, “if the tumour cell population is high, the drug 
administration must be increased”). The results showed that 
the proposed algorithm matched different patient needs, 
with more sensitive patients receiving a lower dose. Delay-
ing treatment resulted in a marked shift in the concentration 
curves as expected.

Moreover, a similar approach was proposed by Alsaadi 
et  al. [56]. In contrast to Treesatayapun et  al. [50, 51], 
young and elderly patients were simulated with different 
parameter values with or without consideration of param-
eter uncertainty. The aims were to achieve a desired number 
of tumour cells (T = 0) for young patients and to control 
normal and tumour cell counts for the elderly to avoid tox-
icity. A fuzzy RL-based state-action-reward-state-action 
(SARSA) algorithm was used to control the tumour entity 
by chemotherapy, modelled by a Caputo-Fabrizio fractional 
order model [39]. Fuzzy logic was applied to enhance the 
controller’s ability to handle uncertainty and imprecision in 
the system. For both patient cases, the algorithms achieved 
their respective goals. The proposed method was superior to 
simple Q-Learning in terms of efficiency, prediction error 
and drug dosage.

3.1.4 � Other Reinforcement Learning Approaches

A combined Bayesian Data Assimilation-Reinforcement 
Learning (DA-RL) algorithm was used to guide model-
informed precision dosing of paclitaxel in simulated non-
small cell lung cancer (NSCLC) patients [57]. The goal of 
the algorithm was to maintain patients’ neutropenia grades 
between 1 and 3 to achieve optimal efficacy and minimal 
toxicity. A Monte Carlo Tree Search was used with an 
upper confidence bound applied to the trees. In total, 1000 
patients were simulated according to values reported in a 
clinical study [58]. Standard dosing, PK-guided dosing, 
maximum-a-posteriori (MAP)-guided dosing and Bayesian 
data assimilation (DA) with and without RL were com-
pared. It was shown that PK-guided dosing performed 

better than standard dosing, but with an increased inci-
dence of grade 0 neutropenia as an indicator of non-effi-
cacy. With MAP-guided dosing, the incidence of grade 4 
neutropenia increased in a cumulative trend. Compared to 
PK-guided dosing, Bayesian DA with or without RL was 
able to significantly minimise the percentage of patients 
in neutropenia grades 0 and 4. Furthermore, the incidence 
of grade 0 and 4 neutropenia was significantly reduced in 
later cycles, highlighting the critical role of individualised 
uncertainty quantification. Maier et al. suggested that the 
small differences observed between DA with and without 
RL could be related to the different weighting of levels 0 
and 4 in the respective reward functions [57]. They postu-
lated that DA with RL may have great potential for long-
term optimisation in a delayed-feedback environment and 
the integration of multiple endpoints.

On the other hand, Shiranthika et al. applied Conserva-
tive Q-Learning to optimise treatment regimens using 
a supervised optimal chemotherapy regimen (SOCR) 
approach [59]. Conservative Q-Learning is postulated to 
deal with possible overestimation losses better than simple 
Q-Learning. The algorithm was applied to 40 retrospec-
tive patients with stage 4 colon cancer receiving first-line 
chemotherapy based on bevacizumab or cetuximab. The 
reward function included changes in tumour size, patient 
weight and drug response, overall side effects and patient 
death. Proposed schedules were monitored by considering 
oncologists’ previous treatment decisions and an adjust-
ment factor of 0.4 was chosen to mitigate discrepancies 
(60% of drug doses chosen by SOCR and 40% chosen 
by experts). Proposed RL schedules were compared to 
actual prescribed schedules for six randomly selected 
bevacizumab patients. The RL schedules were shown to 
be consistent between cycles. Root mean squared error 
(RMSE) differences were acceptable and comparatively 
small. As a limitation, the reward function could be made 
even more accurate if it included both short-term and 
long-term factors according to the authors. In addition, 
they sometimes had to extrapolate tumour sizes and noted 
that weight and side effects were the only indicators of a 
patient's condition.

3.2 � Methods Other Than Reinforcement Learning

In five studies, methods other than RL were used, includ-
ing classical ML approaches and Phenotypic Personalised 
Medicine (Table 3).

3.2.1 � Classical ML Approaches

Aiming at predicting response to platinum-based dou-
blet chemotherapy to optimise regimens in advanced 
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non-resectable NSCLC patients, Kozłowska et al. proposed 
a computational platform combining ML with a mecha-
nistic mathematical model using data from 42 NSCLC 
patients [60]. The mathematical model was an extension of 
a metastatic relapse model [61] calibrated with a multivari-
ate Gaussian mixture model estimated via an expectation-
maximisation method. It included cancer cells sensitive and 
resistant to platinum-based chemotherapy and modelled 
their competition for resources. After predicting the response 
to chemotherapy, different schedules including applying the 
maximum tolerated dose and metronomic therapy, both with 
and without drug holidays, were compared. If competition 
between sensitive and resistant cells was low, there was no 
difference between schedules with or without drug holidays. 
However, if competition was assumed to be high, the best 
outcome occurred in schedules including drug holidays, as 
the number of drug-sensitive cells increased during that 
time.

In order to predict optimal lapatinib treatment regimens 
in breast cancer patients, Yu et al. applied a sequential for-
ward-selection algorithm based on random forests for feature 
selection and different ML algorithms for treatment selection 
[62]. Data were retrospectively collected from 149 HER2(+) 
breast cancer patients who received either regimens includ-
ing 1000 mg or 1250 mg of lapatinib. The outcome vari-
able was the initial dose regimen of lapatinib converted to a 
binary variable. A sequential forward selection (SFS) algo-
rithm based on a Random Forest was used to select the most 
influential features. In the next step, different algorithms 
(Table 3) were used for dose regimen prediction and com-
pared for their predictive ability. The actual dose adminis-
tered to the patient was used as the reference. The four most 
important features identified by the SFS algorithm were 
weight, number of prior chemotherapy treatments, num-
ber of metastases and especially the underlying treatment 
protocol. The most accurate regimen prediction algorithm 
was TabNet (Deep Neural Network for structured tabular 
data). Both regimens could be predicted with an accuracy 
of over 80%. The main limitation of the study according to 
the authors was the limited sample size.

Assessing exposure-effect relationships of cisplatin 
in head and neck cancer patients, Cauvin et al. compared 
different ML approaches [63]. Data were retrospectively 
collected from 80 patients with stage 3–4 disease. Treat-
ment response was assessed after 12 weeks of treatment 
and defined according to RECIST 1.1 criteria [64]. Patients 
were divided into responders and non-responders. Nephro-
toxicity was considered the only dose-limiting toxicity and 
was reported according to the CTCAE grading [65]. Phar-
macokinetics was assumed to follow a three-compartment 
model and exposure parameters were estimated. In the next 
step, different ML algorithms (Supplementary Table 3) were 
compared to identify the exposure parameter most strongly 

associated with response and an optimal therapeutic range 
was identified by Tree-structured Parzen estimation. A theo-
retical dose proposal for the next chemotherapy cycle was 
calculated using the Kinetic Pro V1.0.3 software (IMMPS, 
Paris, France) by simulating expected cisplatin concentra-
tions using PK parameters. Finally, the actual and model-
guided dosing were compared in terms of compliance with 
the proposed therapeutic range and reported toxicity and 
efficacy. The most accurate algorithm for describing the rela-
tionship between exposure parameters and outcome was the 
Generalised Linear Model (GLM) with an accuracy of 0.71 
for outcome prediction. Peak plasma concentration (Cmax) 
was found to be most useful to guide dosing and a range was 
proposed. Following model-guided dosing, most patients 
would have been treated more adequately concerning the 
target range.

3.2.2 � Phenotypic Personalised Medicine Case Studies

CURATE.AI is an artificial intelligence platform used to 
correlate drug dose inputs with efficacy or toxicity outputs 
by parabolic equations to guide precision dosing [66]. The 
phenotypic map generated by the algorithm can implicitly 
incorporate influential mechanistic components such as dis-
ease biology, genetics or PK without explicit knowledge and 
the need for assumptions.

CURATE.AI has so far been used to retrospectively guide 
maintenance therapy in two paediatric patients with stand-
ard-risk acute lymphoblastic leukaemia on either four- or 
two-drug maintenance therapy [67]. It aimed at optimising 
treatment by maintaining absolute neutrophil counts (ANCs) 
and platelet counts within suitable ranges and was compared 
to the actual prescribed doses. The results of the case study 
showed that CURATE.AI resulted in better ANC ranges in 
both patients studied for the four- and two-drug maintenance 
regimens compared to the prescribed regimens. Platelet 
counts were within range for both strategies. In addition, 
the dose suggested by CURATE.AI was usually lower than 
the actual prescribed dose.

Furthermore, the CURATE.AI platform was used to pro-
spectively guide the dosing of a novel bromodomain inhibi-
tor (ZEN-3694) and enzalutamide in a Phase 1b/2a safety 
and tolerability trial [68]. The drugs were administered to an 
enzalutamide-naïve 82-year-old male patient with metastatic 
castration-resistant prostate cancer and alleviated prostate-
specific antigen (PSA) levels despite previous abiraterone 
chemotherapy. For the first 6 months of treatment, the dose 
was guided by a physician only; the following 6 months, 
CURATE.AI recommendations were considered. Patient 
PSA levels were used as the primary marker of clinical activ-
ity to guide dosing. During the physician-guided phase, the 
patient's PSA level and the size of the target lesion already 
decreased significantly after dose reductions of both drugs. 
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At the end of CURATE.AI-guided dosing, the patient’s PSA 
level dropped even further. Overall, the implementation of 
CURATE.AI resulted in a durable response using a reduced 
dose of ZEN-3694, although ZEN-3694 was found to be 
a key modulator of treatment response. However, a major 
limitation of both case studies on CURATE.AI is the limited 
number of patients included.

4 � Discussion

In general, 17 studies on the use of ML methods for antitu-
mour therapy optimisation could be identified in the litera-
ture search, most of which applied RL. Within the identified 
RL studies, epsilon-greedy strategies have been used fre-
quently. While this strategy performs particularly well in the 
short term, less greedy strategies may be interesting in the 
long term, which stresses more on exploration [57]. More 
recent studies have used more advanced Q-Learning strate-
gies in which optimal response functions are represented 
as Deep Neural Networks instead of a table, making them 
potentially more suitable for complex scenarios in oncol-
ogy. In the publications described, classical Q-Learning was 
compared with a FRL-based control method (SARSA algo-
rithm) [56] and a DQN [49] with the novel methods showing 
superiority in terms of maximising the reward and minimis-
ing therapy duration. In addition, when a Multi-Objective 
Deep Q-Network was compared with a conventional DQN 
approach, combining multiple objectives proved to be ben-
eficial [48]. Generally speaking, algorithms performed espe-
cially well when they considered both efficacy and toxic-
ity within their reward functions [31, 48, 57]. Moreover, it 
should be emphasised that the acceptance of using a ML 
method to optimise cancer treatment schedules may increase 
if patient-relevant parameters and expert opinions are con-
sidered [59].

Other than RL, a few identified studies compared vari-
ous classical methods in terms of their predictive abilities. 
In these studies, TabNet, which is a Deep Neural Network 
designed for tabular data [62], and a GLM [63] demon-
strated superior performance compared to other methods 
for their respective tasks. However, since the studies vastly 
differ in their therapy context and the tasks the algorithms 
were applied for, they are difficult to compare. One study 
combined ML methods with mathematical models, which 
led to promising results [60]. Furthermore, the AI platform 
CURATE.AI, which was used to optimise combination 
therapy simultaneously, appears to be interesting for clini-
cal practice, as anticancer therapy is usually a combination 
of drugs [67, 68]. However, it has only been tested on very 
few cancer patients so far.

Although model and environment parameters were often 
reported for the RL algorithms, resulting doses were more 
often reported for the other algorithms. In future research, 
resulting doses and accuracy measures (if applicable) should 
be reported along with important hyperparameters or opti-
mally the whole code. Due to the significantly different algo-
rithm structures, the performance of RL and non-RL meth-
ods cannot be compared. Furthermore, if direct comparisons 
were not made for the specific example, it is not possible to 
directly compare different RL or non-RL methods among 
each other, respectively. However, it can be stated that RL 
algorithms are applicable for more complex tasks and can be 
used for dynamic dose adjustments in ongoing or retrospec-
tive therapies. Therefore, research might focus more on RL 
in the future and ways to apply it in a clinical setting.

While some studies guided dosing of individual antitu-
mour drugs, other studies dealt with the method itself and 
are yet to be made applicable in pracitice. However, clinical 
utility is yet to be proven for all algorithms described in this 
review. Future work should focus on combining efficacy and 
toxicity measures and patient-relevant parameters within the 
reward, as this approach should yield the most promising, 
acceptable and clinically relevant results. In clinical routine, 
where the focus is not only on survival but also on maintain-
ing quality of life in chronic disease, there is no point in 
proposing regimens that improve efficacy but do not also 
ensure that toxicity is not worsened. Moreover, the proposed 
dosing regimens must be practical and avoid irregularities 
(therapy at inappropriate times and dates and inadequate 
doses). In addition, to be closer to practice, algorithms need 
to incorporate concentration-response relationships that have 
been studied in humans and not just incorporate cellular 
interactions. To add to their value, these algorithms should 
preferably be able to optimise combination chemotherapy 
regimens, as anticancer drugs are usually used jointly. Such 
algorithms should then be compared with Therapeutic Drug 
Monitoring or other common dosing strategies to investigate 
their clinical utility in terms of maximising efficacy (e.g., 
by measuring tumour growth or assessing the incidence of 
metastases) and avoiding toxicity. Adverse events should not 
only be reported by the clinical staff based on the CTCAE 
criteria [65] but also by the patients themselves, e.g., using 
the patient-reported outcome version of the CTCAE [69].

If proven clinically useful, RL agents could potentially 
change the dosing paradigms of both classical and targeted 
anticancer agents, and pose an alternative to the still com-
mon fixed-dose approach [70]. In classical chemotherapy, 
they could be used to minimise the number of treatment 
cycles required, particularly to avoid long-term toxicity and 
secondary cancers [71]. In addition, if the algorithms can 
propose schedules with minimal acute adverse events, there 
would potentially be fewer treatment interruptions and the 
need for supplementary therapy. In the case of oral targeted 
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anticancer therapy, optimised schedules could also reduce 
the incidence of adverse events and improve patient adher-
ence [72]. Due to the high cost of oral targeted anticancer 
drugs, rising faster than inflation [73], another useful goal 
may be to minimise treatment costs by testing whether less 
frequent dosing can achieve comparable outcomes. This 
could enable the use of oral targeted anticancer therapy in 
less wealthy countries and patient groups, thereby increasing 
fairness and equity in cancer treatment. In a recently pub-
lished review on Model-Informed Reinforcement Learning 
for precision dosing of different drugs, it was emphasised 
that clinical knowledge and constraints need to be taken into 
account to obtain useful adaptive dosing strategies and that 
algorithms need to be tested prospectively and not only in 
silico [74]. Additionally, the authors state that similarly to 
other methods, RL dose optimisation may be suboptimal or 
inefficient for patient cohorts with high inter-individual vari-
ability. In such cases, implementing the RL-based optimisa-
tion in a Bayesian fashion may be helpful [57, 74].

Overall, it is worth noting that in our literature search 
we were able to identify further preprints in this area which 
could not be included yet for lack of peer review. This high-
lights the importance of this area of research and that many 
more studies will be published in the near future. However, 
it also calls attention to the main limitation of this scoping 
review: The number of studies published on this topic is 
constantly increasing and there might be new eligible studies 
which are not included upon publication. Additionally, only 
studies reporting results were included in this review, while 
there might have been further interesting methodological 
publications (i.e., conference presentations) which did not 
yet present final results. Direct comparisons of the methods 
were mostly impossible as different methods were applied 
in different therapy contexts or general settings. In addition, 
because a scoping review does not assess the quality of the 
evidence, it cannot assess the implications for practice or 
policy.

5 � Conclusions

In summary, this review provides a comprehensive over-
view on ML methods that were recently used and evalu-
ated to optimise cancer treatment dosing. Twelve of the 
17 included studies used RL methods, including Classi-
cal, Deep, Deep Double and Conservative Q-Learning 
and Fuzzy RL. In many cases, a tumour growth model was 
proposed to describe changes in the number of tumour 
cells, immune cells, healthy cells and drug concentration 
during cancer therapy. In these cases, the algorithm was 
mostly rewarded for minimising tumour size and for spar-
ing healthy cells. Some trials included toxicity endpoints 

and patient-relevant parameters in addition to efficacy end-
points in their approach, such as biomarker levels, changes 
in tumour size, side effects and patient death. In most cases, 
epsilon greedy strategies have been used. Furthermore, clas-
sical ML methods were compared in terms of their perfor-
mance, ML and mathematical modelling have been com-
bined and an artificial intelligence platform has been used 
to guide dosing prospectively and retrospectively, albeit only 
in very few patients. Future studies will probably continue 
exploring advanced Q-Learning for dose optimisation and 
consider drug efficacy, toxicity and patient-relevant param-
eters within the reward. Overall, ML methods have a great 
potential for maximising efficacy and minimising toxicity 
by dose optimisation when compared to standard protocols 
even by model-free predictions.
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