
An amortized approach to non-linear mixed-effects modeling based
on neural posterior estimation

Jonas Arruda1, Yannik Schälte1,2, Clemens Peiter1, Olga Teplytska3,
Ulrich Jaehde3, and Jan Hasenauer∗1,2

1University of Bonn, Life and Medical Sciences Institute, 53115 Bonn, Germany
2Helmholtz Zentrum München, Computational Health Center, 85764 Neuherberg, Germany

3University of Bonn, Pharmaceutical Institute, 53121 Bonn, Germany

August 22, 2023

Abstract
Non-linear mixed-effects models are a powerful tool for studying heterogeneous populations in various
fields, including biology, medicine, economics, and engineering. However, fitting these models to data
is computationally challenging if the description of individuals is complex and the population is large.
To address this issue, we propose a novel machine learning-based approach: We exploit neural density
estimation based on normalizing flows to approximate individual-specific posterior distributions in
an amortized fashion, thereby allowing for an efficient inference of population parameters. Applying
this approach to problems from cell biology and pharmacology, we demonstrate its scalability to
large data sets in an unprecedented manner. Moreover, we show that it enables accurate uncertainty
quantification and extends to stochastic models, which established methods, such as SAEM and
FOCEI are unable to handle. Thus, our approach outperforms state-of-the-art methods and improves
the analysis capabilities for heterogeneous populations.

1 Introduction
Heterogeneity within populations is a common phenomenon in various fields, including epidemiology,
pharmacology, ecology, and economics. It is, for instance, well established that the human immune
system exhibits substantial variability among individuals [1, 2], that individual patients respond dif-
ferently to treatments [3–5], that genetically identical cells develop pronounced cell-to-cell variability
[6, 7], but also that individual students perform differently depending on their socioeconomic group
and school [8]. This heterogeneity can be described and analyzed using non-linear mixed-effects
(NLME) models, a powerful class of statistical tools. NLME models can account for similarities and
differences between individuals using fixed effects, random effects, and covariates. This allows for a
high degree of flexibility and interpretability. These models are widely used for statistical analysis [9,
10], hypothesis testing [11], and predictions [3, 4].

NLME models depend on unknown parameters, such as reaction rates and initial concentrations,
which need to be estimated from data. Indeed, parameter estimation – often also called inference
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– provides key insights about the data and underlying processes. The main challenge in inferring
these parameters lies in the required marginalization over random effects at the individual level. For
this, there is generally no closed-form solution [12]. Particularly for large populations, this becomes
a problem, as the marginalization must be performed for all individuals.

The most frequently used inference methods at present are deterministic, starting from the first
inference method introduced by Beal & Sheiner based on a first-order approximation of the model
function around the expected value of random effects [13] and later on conditional modes [14]. It was
used, among others, to analyze clinical patient data [15]. Pinheiro & Bates reviewed more accurate
methods based on the approximation of the marginal likelihood using Laplace methods or quadrature
rules, which can provide higher accuracy, but also come with higher computational costs [16]. Today,
first-order conditional estimation with interaction (FOCEI) [17] is arguably the most common
inference method used in pharmacokinetic modeling. However, the aforementioned methods have
statistical drawbacks, as they do not necessarily converge to maximum likelihood estimates, and
estimates can be substantially biased when the variability of random effects is large [18, 19]. For
unbiased results, Kuhn & Lavielle [20] introduced a stochastic expectation maximization algorithm
(SAEM), which converges under very general conditions [20]. This method was applied, for example,
to model the response of yeast cells to repeated hyperosmotic shocks [10]. Yet, the algorithm can
be computationally demanding, especially for models with a large number of random effects and
models with complex structures. In addition to the aforementioned frequentist approaches, Bayesian
methods applied at the population level have been proposed (see the review [21]), which are even
more computationally demanding, but inherently facilitate uncertainty quantification. To accelerate
inference with sampling algorithms for NLME models Augustin et al. used a simulation-based
approach [22]. However, all the methods mentioned do not apply to stochastic models for the
individual, such as stochastic differential equations (SDEs). So far only Bayesian methods can
provide exact inference for SDEs, with high computational costs [23, 24]. In general, computational
costs make it difficult to fit NLME models to large data sets, for example, thousands of cells
in single-cell experiments or large cohorts of patients, and to obtain reliable estimates of model
parameters [22, 25, 26]. Furthermore, multiple starts of the estimation procedure are needed, further
increasing computational costs, as parameter estimation can be sensitive to the choice of initial
parameter values, making it difficult to find global maximum likelihood estimates [12].

Here, we present an alternative approach based on invertible neural networks to estimate the
parameters of NLME models. We use simulation-based neural posterior estimation, which has
been developed to address general parameter estimation problems [27, 28]. We train a mapping
– a conditional normalizing flow parameterized by an invertible neural network – from a latent
distribution to individual-specific posteriors conditioned on observed individual-level data. During
training of this neural posterior estimator, only simulations from a generative model are used. In
the latter inference phase, the trained estimator can be applied highly efficiently to any data set
with similar measurements and different population models without any further model simulations,
facilitating the estimation of NLME model parameters in an amortized fashion. We compare our
method with state-of-the-art and widely used methods in the field of NLME models on problems from
cell biology and pharmacology: the stochastic approximation expectation maximization algorithm
(SAEM) [20] implemented in Monolix [29] and the first-order conditional estimation with interaction
(FOCEI) [17] implemented in NONMEM [13].
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Figure 1: Three phases of the amortized approach. (I.) The simulation phase, where we generate
data from the model M(ϕ), (II.) the training phase, where we train the neural posterior estimator
to predict individual-specific posteriors based on the simulations, and (III.) the amortized inference
phase, where we infer the population parameters of the non-linear mixed-effects model given observed
data.

2 Results

2.1 An amortized machine learning-based approach to fit NLME models

To facilitate scalable and flexible parameter estimation for NLME models, we developed and
implemented an approach based on amortized machine learning. The approach allows inferring the
parameters of NLME models with deterministic and stochastic mathematical models for individuals.
In practice, individuals are often modeled using ordinary (ODE) or stochastic (SDE) differential
equations. Such models typically depend on unknown parameters ϕ ∈ Rk, such as reaction rates
or initial concentrations, that need to be inferred from data. We assume that the underlying
data generation process can be described via a mechanistic model M(ϕ), incorporating dynamics,
intrinsic sources of stochasticity, as well as measurement noise. We consider a set of measurements
D = {y(i)}n

i=1 with y(i) ∈ Rni for individuals i, e.g., measurements for different cells or patients.
To account for population heterogeneity, we assume that each individual i can be described by
parameters ϕ(i), which consist of fixed effects β shared across the population, and/or random effects
b(i) specific to individuals. This relation is described by a population model ϕ(i) = f(β, b(i)). As
usual in practice, we fully characterize the distribution of individual-specific parameters ϕ(i) via
population parameters θ, e.g., ϕ(i) = β + b(i) and b(i) ∼ N (0,D) with covariance matrix D, we
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write as θ = (β,D). Together, this defines a non-linear mixed-effects (NLME) model.
In order to estimate the population parameters θ, the joint likelihood of the data D given θ,

p(D | θ) =
n∏

i=1

∫
p(y(i) | ϕ)p(ϕ | θ) dϕ, (1)

is maximized. The likelihood p(y(i) | ϕ) is implicitly induced via the generative model M and
the conditional density p(ϕ | θ) is defined by the chosen population model. The maximization is
computationally demanding, as it involves marginalization over unobserved random effects. Usually,
the integral has no closed-form solution and even the likelihood p(y(i) | ϕ) may be intractable, as
is, for example, the case for stochastic models. Established methods need a tractable likelihood
and approximate the integral for each individual, either by linearization around the modes of
the integrand conditioned on the population parameters (such as FOCEI) [17], or by sampling
individual-specific parameters conditioned on the observations of the individuals and the population
parameters (such as SAEM) [20]. Both approaches work in an iterative manner, where alternately
the individual-specific parameters and the population parameters are optimized.

We note that the marginal likelihood (1) can be written as a conditional expectation over
individual-specific posteriors p(ϕ | y) given a prior p(ϕ) that is non-zero on the integration domain,

p(D | θ) =
n∏

i=1
p(y(i))

∫
p(ϕ | y(i))p(ϕ | θ)

p(ϕ) dϕ =
n∏

i=1
p(y(i))Eϕ∼p(ϕ|y(i))

[
p(ϕ | θ)

p(ϕ)

]
. (2)

This means that samples from individual-specific posteriors would facilitate the construction of
a Monte Carlo estimator for the population-level marginal likelihood. Thus, we obtain optimal
population parameters θ∗ by taking the logarithm of (2), which is commonly done for numerical
stability [30], and solving the minimization problem

θ∗ = arg min
θ

− log p(D | θ) ≈ arg min
θ

−
n∑

i=1
log

 1
M

M∑
j=1

p(ϕ(i)
j | θ)

p(ϕ(i)
j )

 , (3)

with ϕ(i)
j ∼ p(ϕ | y(i)) i.i.d. for j = 1, . . . , M for each individual i.

Based on these insights, we present here a novel three-phase procedure for the inference of NLME
models (Figure 1): (I) In the simulation phase, we use the generative model M(ϕ) and multiple
samples ϕ from the prior p(ϕ) to produce a set of simulations {y ∼ M(ϕ)}. (II) In the training
phase, we learn a global approximation q(ϕ | y) ≈ p(ϕ | y) for any (ϕ,y) ∼ p(y | ϕ) · p(ϕ), with q
parameterized as a normalizing flow via an invertible neural network [27]. The approximation q is
trained using the generated pairs of parameters and synthetic data (ϕ,y) to minimize the Kullback-
Leibler divergence between the true and approximate posterior distributions for any y. Instead of
inserting data y directly into the invertible neural network as a conditional input, we use summary
networks, such as vision or sequence models, to reduce the dimension of the data [27]. The summary
and invertible network can be trained jointly, and we check the approximation quality by calibration
diagnostics. (III) After sufficiently long simulation and training phases with simulated data, we
obtain a global approximation of the true posterior distribution from which we can efficiently draw
samples conditioned on so far unseen data. In the amortized inference phase, we assume a population
model and infer the population-level parameters θ using the approximation to the population
likelihood (3) based on samples from individual-specific posterior distributions. This likelihood is
amenable and minimized using a gradient-based optimizer. The minimization is computationally
efficient and simple, since only sampling from the posterior distributions is required.
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In summary, we split the inference of population parameters into data-free simulation and
training phases during which we learn a global posterior approximation, and an efficient inference
phase during which we no longer need to simulate the potentially expensive mechanistic model,
but simply sample from the trained neural posterior estimator. Owing to its low computational
cost, the inference phase can be, e.g., easily repeated for different population models to perform
model selection, and can handle multiple data sets with many individuals. Thus, in these cases, we
amortize the cost of training the neural posterior estimator.

2.2 Normalizing flows provide accurate and efficient approximation of individual-
specific posteriors

The proposed approach to fitting the NLME models is based on the approximation of the individual-
specific posterior distributions with normalizing flows, which are learned in the training phase. As
the accuracy of these approximations is critical, we assessed in a first step the approximation quality.
Therefore, we considered two published ODE-based NLME models of mRNA transfection [25].
These ODE models describe the transfection process (Figure 2A) – which is at the core of modern
mRNA vaccines [31] – at the single-cell level. The models possess, respectively, 6 and 11 parameters
that describe 2 and 4 hidden state variables (Figure 2B, see Supplement A.1 for details on the
models). Single cells were transfected with mRNA coding for a green fluorescent protein (GFP),
and dense temporally resolved fluorescence intensities of different cells were measured for 30 hours
using micropatterned protein arrays and time-lapse microscopy (Figure 2C).

We verified the accuracy of our neural posterior estimator using simulation-based calibration
(SBC) plots [32], and compared the posterior estimates obtained using our method with reference
methods for randomly chosen synthetic and real single cells, in particular using Markov chain Monte
Carlo (MCMC) with adaptive parallel tempering implemented in pyPESTO [33]. We found that
for both ODE models, the SBC plots show no systematic bias, and the neural posterior estimator
matches the MCMC posteriors well, indicating that the individual-specific posteriors in different
parameter regimes for both synthetic and real samples from the data were accurately captured
(Supplement Figures A3, A4, A5). Furthermore, the posterior fit at the single-cell level demonstrates
a high level of accuracy (Figure 2D).

An assessment of computation time revealed that the employed MCMC sampler required
approximately 1 million samples and 10 chains with an effective sample size of 195, which took
around 20 minutes of computation time for a single cell. In comparison, the trained neural posterior
estimator only required a few seconds for the same effective sample size and on the same set-up (see
details on the implementation in Methods 4.5). Thus, in this case, the training time of the neural
networks to obtain individual-specific posteriors, ∼ 6.5 hours, would be amortized after around 20
cells, or even after an individual cell if a sufficiently high sample size is required. This demonstrates
the efficiency of neural posterior estimation for parameter estimation also outside a mixed-effects
context.

2.3 Machine learning-based approach provides accurate estimates of population
parameters

Given the accurate approximation of posteriors on an individual-specific level, we can use the
pre-trained densities to estimate the NLME population parameters. To assess the accuracy of our
approach, we generated synthetic data using the two NLME models of mRNA transfection (see
Supplement A.1.2), and compared the mean squared distance of the true parameters to the estimated
parameters of our approach to the estimated parameters of the state-of-the-art method SAEM [20]
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Figure 2: Validation of the amortized approach on single-cell NLME models. (A) Single-cell
translation kinetics after mRNA transfection. (B) Visualization of the simple and detailed single-cell
ODE models, where the color refers to the states included in the respective model (see Supplement A.1
for details on the models). (C) Fluorescent intensity time courses of 200 single cells (first out of
5488). (D) Credible regions of trajectories (simple single-cell ODE model) estimated by the neural
posterior estimator for two real cells. (E) Median of the mean squared error (MSE) of the estimated
compared to the true parameters of the synthetic data for both single-cell NLME models is shown
for different numbers of cells and numbers of posterior samples M = 10, 100 used in the Monte Carlo
approximation (median of the best 10 multi-starts divided by the minimal error achieved by the
baseline method). (F) The difference in the population mean estimated from real trajectories and
simulations generated with the estimated population parameters is shown with a 95% confidence
interval (CI). Additionally to the single-cell models fitted with the amortized approach, the best fit
of Fröhlich et al. for the simple ODE model is shown [25].

implemented in Monolix [29], which is unbiased and converges under very general conditions [20].
As the SAEM estimates depend on the starting point, we performed a multi-start using 100 different
starting points (sampled from the same prior as used in the training phase of the neural posterior
estimator). Moreover, we compared our results with those published in [25], where a Laplacian
approximation together with a multi-experiment setup on real data was introduced to improve
parameter identifiability (see Supplement A.1.1).

Our experiments show that, for different data set sizes and models, our method was able to
recover the true parameters with a lower recovery error than SAEM (Figure 2E). For each ODE
model, we trained only one neural posterior estimator, which could be used for inference on all
different single-cell data sets, while SAEM needed a full restart for each data set. In addition, the
estimated population mean of the simple model of the machine learning-based approach shows
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a better fit of the population mean compared to the results published in [25] for the real data
(Figure 2F). Furthermore, we can confirm the result of [25] that the detailed model describes the
initial fluorescence activity more accurately (Figure 2F).

In summary, our approach based on amortized neural posterior estimation was able to provide
accurate estimates of population parameters for synthetic and real data. Moreover, we needed only
one neural posterior estimator to be trained for each model and we could apply it to synthetic and
real data sets of different sizes.

2.4 Amortization for large populations, new data sets and changing population
models achieved

As the computational cost of the state-of-the-art method SAEM increases linearly with the number
of individuals in a population (Figure 3A), we compared the computation time for the estimation
of population parameters of our machine learning-based approach to SAEM [20] implemented in
Monolix [29].

The assessment of the overall computation times revealed that the computationally demanding
phase in our approach is the data simulation using the mechanistic model and the training of the
neural posterior estimator. For both phases, the detailed NLME mode required three times as much
computation time compared to the simple model. Afterwards, inferring the population parameters
for a particular new data set can be done highly efficiently within seconds. Our method scales nearly
constantly with respect to the number of individuals in the population (Figure 3A). In particular,
if the population was large (10, 000 cells in the case of the single-cell NLME models), we already
amortized the training time cost compared to SAEM for a single data set.

Before, the parameters in the single cell NLME models were assumed to be independently
distributed. However, cross-correlations between parameters are essential to explain population
behavior [10], but were not captured in [25] due to computational costs. Indeed, for the detailed mRNA
transfection model, the medians of the individual-specific posteriors of the respective parameters
show a clear correlation (Figure 3B). So, instead of assuming a diagonal covariance matrix for the
random effects, we changed only the population model to allow for a full covariance matrix and
repeated the amortized inference phase without any further training of the neural posterior estimator.
Including these correlations substantially improved the fit of the population variance (Figure 3C),
which confirms the findings on the importance of incorporating cross-correlations between parameters
in [10]. Moreover, while applying our approach to real data in the multi-experiment setup of [25],
we already effectively changed the population model compared to the synthetic data setting, as
most parameters were assumed to be shared between multiple experiments. To account for this,
we included an indicator function to map experiment-specific and population parameters onto
cell-specific parameters (see Supplement A.1.1).

In summary, our analyses showed that our approach scales to large populations and allows for
the reuse of the trained neural posterior estimator on different data sets and for different population
models at almost no additional computational cost, rendering it substantially more scalable than
state-of-the-art methods.

2.5 Robust uncertainty analysis becomes possible due to efficient inference of
the population model

Our previous evaluations have shown that the approach based on amortizing neural posterior
estimation allows efficient construction of point estimates. Beyond point estimates, in many
applications, it is important to assess the uncertainty of the parameters, e.g., to determine the
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Figure 3: Flexibility and scalability of the amortized approach on the single-cell NLME models. (A)
Overall computation time (average over ten best multi-starts) for the single-cell NLME models
compared to the baseline using parallelization. (B) Inter-individual correlation of the parameters
in the detailed single-cell model. Size and color of the boxes represent the estimated correlation
between the medians of the posterior distributions given by the neural density estimator for the
respective parameters on the real data. (C) Mean and 99% confidence intervals of the simulations
for the detailed NLME model, where the population parameters are assumed to be log-normally
distributed with and without correlations between parameters. (D) 80%, 90%, and 95% confidence
intervals (CIs) for the simple single-cell NLME model (see Supplement Figure A1 for the other
models) using synthetic data with known true parameters. The true variance of the offset is 0 and,
therefore, cannot be seen.

identifiability of the parameters, draw reliable conclusions, and make representative predictions
[30, 34]. The implementation of SAEM in Monolix allows standard errors to be obtained through
linearization of the likelihood or by a stochastic approximation of the Fisher information matrix,
which yields asymptotically correct results under the assumption of normally distributed errors and
a large amount of data. Using these standard errors, the confidence intervals are calculated using the
Wald statistic [29]. However, to ensure the validity of the confidence intervals, it is often advisable
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Figure 4: Stochastic NLME model improves identifiability compared to deterministic counterpart.
(A) Credible regions of a trajectory of the SDE single-cell model estimated by the neural posterior
estimator for a real cell. The estimated median of the posterior was simulated 10 times. (B)
Estimated population distributions for the parameters k, m0 and scale for the SDE NLME model
and their product in the simple ODE NLME model.

to use bootstrapping or non-local approaches such as profile likelihoods, as these are more accurate
when the above assumptions are not met, e.g., allowing non-symmetric confidence intervals [35].
These methods are not supported directly in Monolix. Moreover, such tests are infeasible when the
computational time is too high, as is the case with SAEM, or biased, when the estimates are already
biased, as can be the case with FOCEI.

Given the computational efficiency of the inference phase in our approach, we explored the
possibility of performing accurate uncertainty quantification. Specifically, as it is a widely used
non-local frequentist approach to uncertainty quantification in system biology, we applied profile
likelihood analysis [36]. This revealed that the computation of profile likelihoods takes only seconds,
whereas linearization with SAEM already takes on the order of minutes. In this case, the confidence
intervals based on the profile likelihoods were comparable to those based on linearization using
SAEM for most parameters. Yet, for three variance parameters, the 80% CIs computed with SAEM
actually do not cover the true parameter, while the CIs computed with profiles from the amortized
approach do (Figure 3D).

In conclusion, our amortized approach allows for an effective and robust uncertainty quantification.
In principle, in addition to computing profile likelihoods, bootstrapping could also be easily done
using the amortized approach since the training and simulation phase is data-free. This is a key
advantage, as other frequentist methods do not allow for a robust uncertainty analysis due to
substantially higher computational costs.

2.6 Stochastic mixed-effects models become easily tractable

As our approach based on neural posterior estimation proved to be valuable for deterministic models,
we assessed its capability to cope with stochastic models, which often provide a more adequate
description of the underlying process [37, 38]. At the single cell level, ignoring the inherent stochastic
nature of reactions can bias parameter estimates [23], and pooling measurements from several cells is
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indispensable for reliable estimates [39]. However, for such models, the likelihood function – which
our purely simulation-based approach does not need – is often unavailable, requiring computationally
demanding techniques such as approximate Bayesian computation or a Metropolis-within-Gibbs
algorithm, which can handle the unavailable likelihood function via correlated particle filters [23, 24,
40]. Here, we again considered the processes of mRNA transfection, but described by a stochastic
differential equation (SDE) as proposed by [41] (see the model specification in Supplement A.1).
This model has been shown to be superior for the description of individual cells and to improve
parameter identifiability [41], but has not been used so far in an NLME modeling framework.

The evaluation using the SDE NLME model on synthetic data revealed that the machine learning-
based approach was indeed able to accurately recover the stochastic NLME model parameters
(Supplement Figure A1). Moreover, the posterior fit for a single real cell is accurate (Figure 4A).
Further analysis on synthetic data generated by the SDE NLME model showed that the simple ODE
NLME model estimated parameters such that the variance of the population was 3 times larger than
the true variance, while for the stochastic NLME model the variance is only 1.3 times larger and
hence capable of capturing the data more accurately (Supplement Figure A2). This, in particular,
underlines that a deterministic model can give erroneous results if it inadequately captures the
underlying processes. The overall computational time (18 hours) was comparable to the detailed
ODE model used before (19 hours), and the amortized inference phase remained highly efficient.

The simple ODE model of the mRNA transfection processes possessed structural non-identi-
fiabilities, meaning that not all the parameters can be determined from the data. Consequently,
the ODE model encompasses only the product k · m0 · scale, while the SDE model encompasses the
individual parameters k, m0 and scale, offering a more detailed representation. Indeed, using our
amortizing NLME framework, we were able to identify all parameters of the stochastic NLME model
(Figure 4B).

In summary, stochastic models can be a more accurate description of the underlying process,
and our machine learning-based approach enables the use of either a deterministic or a stochastic
NLME model, whichever is more appropriate. This enables not only a more profound understanding
of the actual mechanism, but can also improve model identifiability.

2.7 Individual-specific characteristics can be handled

So far, we have considered inference problems in which all individuals (or at least batches thereof)
were subject to similar conditions. However, in practice, there are often further individual-level
characteristics – covariates – available, such as age, dosing regimes, or preconditions of patients. In
pharmacokinetics, one is interested in describing the absorption and distribution of drugs within the
body, and usually some characteristics of individuals are known, but measurements are often sparse
(Figure 5A). These characteristics pose a challenge for simulation-based algorithms that require
training data similar to the data of interest. Therefore, we studied the applicability of our approach
to a pharmacokinetic ODE model as introduced in [42], describing the distribution of an angiogenesis
inhibitor, a drug that inhibits the growth of new blood vessels, and its metabolite in a compartmental
model. We used measurement data (sunitinib and SU12662 plasma) from a cohort of 47 patients,
including covariates such as age, sex, and medication times and quantities (see Supplement A.2).
As it is arguably the most common inference method used in pharmacokinetic modeling, here we
considered FOCEI [17] for comparison, implemented in NONMEM [13]. We compared the simulations
for each individual generated from the estimated parameters of both methods. To simulate individual
patients from so-called empirical Bayes estimates, we fixed the population parameters and maximized
for each patient individually the scaled posterior p(ϕ | y(i))/p(ϕ)p(ϕ | θ) or, as usual, the scaled
likelihood p(y(i) | ϕ)p(ϕ | θ) using FOCEI’s linearization of the likelihood.
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Figure 5: Amortization in pharmacokinetic modeling. (A) Visualization of patient data: individual-
specific measurements and dosing regimes. (B) Encoding of dosing events as part of observations,
which are given to the summary network of the neural posterior estimator to estimate individual-
specific posterior distributions. (C) Fit of a single patient using FOCEI and the amortized approach
to NLME models. (D–E) Measurements against simulations of empirical Bayes estimates using
FOCEI (D) and the amortized approach (E), respectively. (F–G) Measurements against simulations
of estimated population parameters (excluding random effects) using FOCEI (F) and the amortized
approach (G), respectively.

In our amortizing framework, covariates such as age can be treated either as random variables
on the individual level or as part of the population model. If they are part of the population model,
the covariates can be mapped to the random effects and can partially explain them. If they are
instead part of the model M, then they need to be synthetically generated during the simulation
phase. This is the case with dosing regimes, which refer to the prescribed schedules and dosages of
medications that are administered to patients. Therefore, we encoded the dosing events as part of
the observations, which are given to the summary network (Figure 5B). During the simulation, we
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generated the dosing events stochastically from a reasonable prior range.
Analyses of the amortized approach to fit this pharmacokinetic NLME model revealed that

simulating data now took considerably more time (56 hours on 8 cores) due to model complexity
and discrete events. On this small data set, FOCEI was much faster and needed only a few minutes.
After training, inferring the population parameters using our approach took only seconds due to the
small cohort of patients.

Our approach was able, similar to FOCEI, to fit the measurements for a single patient (Figure 5C).
Comparing the results of our machine learning-based approach with those obtained using FOCEI
revealed that the simulations for individual patients, the empirical Bayes estimates, generally seem
to match the measurements of that individual better than the machine learning-based approach
(Figure 5D–E). Yet, correlation of simulations and measurements is higher for the amortized approach
(0.752 for sunitinib and 0.746 for SU12662) than for FOCEI (0.235 and 0.006, respectively), since
FOCEI has several severe outliers, which our method does not have (Figure 5D–E). Simulations at
the population level (i.e., random effects were set to 0) show that the ones generated by FOCEI
tend to be larger than the actual measurements, while the difference between the measurements
and simulations from our approach based on neural posterior estimation is more symmetrically
distributed (Figure 5F–G). Thus, FOCEI appears to give a biased estimate of the population, which
is a known problem for this deterministic method [18, 19, 43]. However, the correlation of simulations
of the population and measurements is similar for both approaches: 0.806 (sunitinib) and 0.743
(SU12662) for FOCEI and 0.779 and 0.748 for the amortized approach, respectively.

This proof-of-concept application demonstrates that our method is able to handle individual-level
covariates such as dosing regimes. In particular, we observed a less biased population fit as compared
to FOCEI. However, further research is needed to, e.g., calibrate the summary network and hence
improve the fit of the individual patients. For larger cohorts of patients, we would expect to see
efficiency advantages compared to FOCEI also in the overall computing time, which however remains
to be investigated.

3 Discussion
We developed a novel approach to non-linear mixed-effects model inference based on amortized
neural posterior estimation. The proposed method offers several advantages such as scalability,
flexibility, and accurate uncertainty quantification over established approaches, as we demonstrated
on problems from single-cell biology and pharmacology.

One of the most important benefits of the method is its scalability. The efficient amortizing
inference phase allows to scale to large numbers of individuals and can be applied to before unseen
data. The whole workflow scales almost constantly in the number of individuals in the data. The
main bottleneck, the simulation and training phases, can be tackled by more extensive parallelization
on a high-performance infrastructure, since all simulations are independent. Further, the method can
be applied to various population models with low computational costs using the same trained neural
posterior estimator, allowing efficient model selection. In contrast, state-of-the-art methods require
a full restart for each population model. In addition, our approach allows to flexibly incorporate
individual-specific characteristics enabling an efficient selection of covariates in the population model.
Our machine learning-based approach is purely simulation-based; that is, it does not require the
evaluation of likelihoods, but only a generative model to simulate synthetic data. Therefore, it can
be easily used even for complex stochastic models, which established approaches fall short of, as we
demonstrated on an SDE-based NLME model of mRNA transfection. This can be easily extended to
Markov jump processes, e.g., simulated with the Gillespie algorithm [44]. This generality is unique in
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the NLME context, as special frameworks needed to be developed to cope with stochastic differential
equations [23] or Markov jump processes [39]. Lastly, the efficient neural posterior estimator
facilitates the use of more accurate and systematic methods to assess parameter uncertainty. Here,
we demonstrated this by combining our approach with profile likelihoods as a proof-of-concept,
but other approaches, such as bootstrapping and Bayesian sampling, could conceptually also be
efficiently applied.

Despite its benefits, the proposed method has some limitations. For small data sets and if no
population model selection or accurate uncertainty quantification is performed, the computation time
of our approach, its simulation and training phases, will be higher compared to established methods.
Additionally, the proposed method may produce erroneous parameter estimates if the prior is too
narrow or if the underlying model is misspecified [45], or it may produce non-conservative posterior
estimates [46]. However, misspecification of the model is a general problem for state-of-the-art
methods as well. A solution might be to extend the loss function during training to include a
misspecification measure [45]. On the other hand, the accuracy of the approximated posteriors
can be checked after training, e.g., by simulation-based calibration [32], or individual posterior
checks by MCMC or approximate Bayesian computation (ABC) [40]. These, however, introduce
an additional computationally expensive step. Imperfect approximations of true posteriors can
occur if the conditional normalizing flows, our foundation of the global posterior estimator, are
not expressive enough [47]. This might be the case for multimodal distributions in general [47],
but not for the examples we considered. Nevertheless, the approximations could be improved by a
deeper architecture, or one could consider generalized normalizing flows [47], conditional variational
autoencoders [48] or conditional generative adversarial neural networks [49] as basis of the global
posterior estimator.

In conclusion, the amortized approach we presented in this study offers a powerful solution
for non-linear mixed-effects modeling, enabling researchers to flexibly use models for individuals
– including stochastic ones – and the population while performing accurate parameter estimation
and uncertainty analysis, and to gain a deeper understanding of the underlying processes in a more
scalable manner than state-of-the-art methods.

4 Methods
Non-linear mixed-effects models are a powerful statistical tool for analyzing data that are both
clustered and non-linear. Here we will present the three phases of the amortized approach to NLME
models starting from the individual level going to the population.

4.1 The generative model

We consider a set of observed i.i.d. data D = {y(i)}n
i=1 from a population. These measurements

per individual can be made at different times, with different recurrences (including snapshot
measurements) and of different dimensions ni. We assume that an individual y(i) ∈ Rni can be
described through a generative process M(ϕ) with unknown parameters ϕ ∈ Rk. As a generative
model, we understand any parametric model, such as linear models, differential equations, or Markov
jump processes, which can produce predictions of our observables y(i) for an individual i given
some parameters ϕ (see Supplements A.1 and A.2 for the models used in this manuscript). Since
measurements are noisy, noise generation is part of the generative model; e.g., normal noise is added
after simulation of the data. The first phase of our method is to simulate training data from this
model using samples from a parameter prior distribution p(ϕ).
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4.2 The non-linear mixed-effects model

Having a description of a specific individual in a population, we incorporate the heterogeneity of
the population – as in the standard NLME frameworks [12] – by connecting the parameters from
the individual level to the parameters describing the population. In NLME models, it is assumed
that the population can be described by fixed effects β, effects common to all individuals or certain
groups of the population, and random effects specific to individuals b(i) [12]. The random effects
can then be described by a distribution, where we allow any valid probability distribution with a
density, such as (log)-normal distributions, Cauchy distributions, and mixture distributions, among
others. We relate these effects to individual-specific parameters ϕ(i) using a population model f ,
such that ϕ(i) = f(β, b(i)). Here, f is often a simple linear combination or an exponential and is an
abstraction of the standard non-linear mixed-effects model in [12]. For ease of notation, we consider a
single vector of population parameters θ that fully characterize the distribution of individual-specific
parameters ϕ(i). For example, this can be θ = (β,D) with random effects b(i) ∼ N (0,D) and
ϕ(i) = Aβ + Bb(i), where A and B are design matrices, β are fixed effects, and D is the covariance
matrix of random effects. Furthermore, the generative model M or the population model can include
covariates x(i), that is, additional information on individuals, for example, ϕ(i) = Aβ+Bb(i) +Cx(i),
where C is the design matrix for the covariates.

Our objective is to maximize the joint likelihood p(D | θ) of the data D given the population
parameters θ. This is a time-consuming task, as it involves repeated integration over unobserved
random effects:

p(D | θ) =
n∏

i=1

∫
p(y(i) | ϕ)p(ϕ | θ) dϕ. (4)

Solving this marginalization efficiently is the main challenge in parameter inference in non-linear
mixed-effects models. Moreover, the conditional density p(ϕ | θ) is known from the population
model specification, but the marginal likelihood p(y(i) | ϕ) could be intractable, for example, when
the generative model is a stochastic differential equation.

4.3 Individual-specific neural posterior estimator

In the following, we develop an approach to efficiently maximize p(D | θ) under the assumption that
we can easily sample from an approximation of the posterior distribution p(ϕ | y(i)). In general,
individual measurements are not sufficiently informative to obtain reliable point estimates and only
the joint information is reliable [12]. However, using a Bayesian approach to describe individuals, we
encode all the available information on a specific individual i in the posterior of the parameters ϕ(i)

and then combine samples from the posterior to infer the population characteristics. Therefore,
all parameters – also those which are considered constant in the population – will first be treated
as random variables. For that, we consider the parameter prior distribution p(ϕ) and define the
joint distribution of parameters and observables p(ϕ,y) = p(y | ϕ) · p(ϕ) = p(ϕ | y) · p(y) using
Bayes theorem. By sampling from the prior distribution ϕ ∼ p(ϕ) and generating simulations
from M(ϕ), which correspond to the marginalized likelihood p(y | ϕ), we get pairs of parameters
and data (ϕ,y) ∼ p(y | ϕ) · p(ϕ). We use these pairs to train a normalizing flow from a normal
distribution conditioned on observations y to the posterior distribution p(ϕ | y) by minimizing the
Kullback-Leibler divergence between the true and approximate posterior distributions as in [27]:

arg min
ψ

Ep(y)
[
KL(p(ϕ | y) || qψ(ϕ | y))

]
= arg max

ψ

∫∫
p(y,ϕ) log qψ(ϕ | y) dy dϕ. (5)
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The approximation qψ(ϕ | y) of the posterior can be expressed by a density transformation from the
latent normal distribution and, therefore, can be efficiently evaluated. By minimizing (5) using a
Monte Carlo approximation, we train a global approximation of the posterior distribution p(ϕ | y)
for any parameters and data (ϕ,y). In particular, we parameterize the normalizing flow by an
invertible neural network and train it together with a summary network (Figure 6).

The summary network provides informative low-dimensional summary statistics on the observa-
tions and should be adapted to the problem at hand. For time trajectories, we use long-short-term
memory neural networks to ensure that regardless of the number of observations we get a fixed
length vector of summary statistics, which is important, as the invertible neural network have a
fixed dimension. Besides the restriction of getting a fixed length vector as summary statistics, one
can use any architecture as summary network, such as transformers, convolutional neural networks,
etc., but also fixed summary statistics if the sufficient statistics are known. This allows us to work
with a variety of different simulations, ranging from snapshot data to densely measured observations.
If the covariates are part of the generative model M and not of the population model f , they must
be simulated during the training phase of the neural posterior estimator in the same way as the
other parameters of the generative model. Almost all the total computational cost is required to
simulate the observations and train the neural networks. The simulation time, which can easily
be larger than the training time, depends on the generative model and the number of simulations
needed for training. It can be effectively reduced by heavy parallelization since all simulations are
independent, whereas the training time depends on the number of simulations and parameters in
the generative model. Training time is reduced by using GPUs and early stopping, where the latter
is also assumed to improve the generalization of neural networks [50]. After training the normalizing
flow, convergence can be ensured through calibration diagnostics (see Supplement A.3). Then, we are
able to efficiently sample from the posterior distributions that are conditioned on individual-specific
observations, which will allow us to estimate the distribution of the population.

4.4 Problem reformulation allows use of pre-trained density

Given individual-specific posterior distributions p(ϕ | y(i)), we can proceed to estimate population
parameters θ by reformulating the problem. We can rewrite the integrals over the marginal
likelihood (4) as a conditional expectation

p(D | θ) =
n∏

i=1
p(y(i))

∫
p(ϕ | y(i))p(ϕ | θ)

p(ϕ) dϕ =
n∏

i=1
p(y(i))Eϕ∼p(ϕ|y(i))

[
p(ϕ | θ)

p(ϕ)

]
, (6)

provided that the prior p(ϕ) is non-zero in the integration domain. Here, the prior has the role of
importance weights.

We can sample from the approximate posterior qψ(ϕ | y(i)) and approximate the conditional
expectation by a Monte Carlo sample. Further using the log-likelihood, which is commonly done for
numerical stability [30], we arrive at the minimization problem

θ∗ = arg min
θ

− log(p(D | θ)) ≈ arg min
θ

−
n∑

i=1
log

 1
M

M∑
j=1

p(ϕ(i)
j | θ)

p(ϕ(i)
j )

 (7)

with ϕ(i)
j ∼ qψ(ϕ | y(i)) i.i.d. for j = 1, . . . , M , for each individual i. This problem can be solved

with a gradient-based optimizer; here we used the local optimization method L-BFGS [51]. The
minimization is computationally efficient and simple, as no numerical simulations of the underlying
model are required. Since we have independent samples, we do not need a large sample size M .
Therefore, the computational costs of inferring population parameters are negligible.
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4.5 Implementation

We implemented the individual-specific posterior approximation using the BayesFlow tool [52]. For
a specification of the neural network architecture, we refer to the Supplement A.3. To estimate the
population parameters, we implemented the minimization problem (7) as an objective function in
the pyPESTO toolbox [33]. There, we used the local optimization method L-BFGS [51] embedded in
a multistart framework with starting points calculated from the medians of the individual-specific
posteriors (e.g., mean and covariance for a normal distribution). In our applications, usually 10
starts were already enough to reliably obtain the global optimum several times, but it is easy to
perform more. Parameters that are shared between individuals, that is, parameters which do not
consist of a random effect, can be approximated in the given approach by fixing their variance to
a small value. Note that the objective (7) often reduces to a logarithmic sum of exponentials, for
which numerically stable implementations should be used, such as the log-sum-exp-trick [53]. The
simulations of the generative model, multistarts in pyPESTO and a single start in Monolix used
all available cores for parallelization. Moreover, the contribution of each individual could also be
evaluated in parallel, giving the option of further parallelizing the calculation of the objective in a
single start.

We ran all analyses on a computing cluster using eight CPU cores for parallelization and one
GPU for training the neural networks. The computing cluster uses an AMD EPYC 7F72 with a
clock speed up to 3.2 GHz and 1 TB of RAM. The neural network training was performed on a
cluster node with an NVIDIA A100 graphics card with 40 GB of VRAM.

The code and a guide, aimed at assisting users in training their own non-linear mixed-effects
models, can be found at https://github.com/arrjon/Amortized-NLME-Models.git. A snapshot
of the code and the results underlying this study can be found at https://zenodo.org/record/
8245786. The patient data cannot be disclosed, while the single-cell data has been made available
by Fröhlich et al. [25].
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A Supplementary Information

A.1 Specification of the single-cell models

Living cells exhibit variability at the single cell level due to various factors such as cellular processes,
cell cycle state, environmental differences, and individual cell history [25]. Fröhlich et al. were
interested in the dynamics of protein expression and transfected single cells with enhanced green
fluorescent protein (eGFP) encoding mRNA. The expression of the eGFP reporter gene was recorded
every ten minutes for a period of 30 hours using a scanning time-lapse microscope setup. From these
data, the authors estimated the parameters of the translation process using ordinary differential
equation (ODE) models in a NLME framework.

In this work, we focus on two models termed the “simple” and “detailed” models from [25].
We denote the abundance of mRNA as m, proteins as p, ribosomes as r, and enzymes as e. For
both models, we assume additive normal measurement noise, that is, the measurements y follow
y ∼ N(0, σ2) and our assumed prior distribution for σ is log N(−1, 2).

Simple ODE model

The ODE system is
dm

dt
= −δ · m m(t0) = 1

dp

dt
= k · m0 · scale · m − γ · p p(0) = 0

y = log(p + offset),

where the priors assumed for the variables are
• mRNA degradation rate δ ∼ log N (−3, 5),

• protein degradation rate γ ∼ log N (−3, 5),

• combined parameters k · m0 · scale ∼ log N (5, 11) (referred to as scale),

• mRNA entering the cell time point t0 ∼ log N (0, 2),

• and offset ∼ log N (1, 6).
The parameters k, m0, scale can only be identified as a product to improve identifiability [25]. This
ODE system has an analytical solution, which we use to perform simulations in Python.

Detailed ODE model

The ODE system is
dm

dt
= −δ1m0 · m · e − k1m0 · m · r + k2 ·

(
r0
mo

− r

)
m(t0) = 1

de

dt
= δ1m0 · m · e − δ2 ·

(
e0
m0

− e

)
e(0) = e0

m0
dr

dt
= k2 ·

(
r0
m0

− r

)
− k1m0 · m · r r(0) = r0

m0
dp

dt
= k2m0scale ·

(
r0
m0

− r

)
− γ · p p(0) = 0

y = log(p + offset).
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For a detailed description of the parameters, we refer to [25]. The priors assumed for the variables
are

δ1m0 ∼ log N (0, 5), k1m0 ∼ log N (1, 2)

δ2 ∼ log N (−1, 5), r0
m0

∼ log N (−3, 2),
e0
m0

∼ log N (0, 2), γ ∼ log N (−6, 5),

k2m0scale ∼ log N (12, 1), t0 ∼ log N (0, 2),
k2 ∼ log N (0, 2), offset ∼ log N (2, 6).

To the combined parameters k2m0scale we refer to as scale. This ODE system is simulated using
the Rodas5P solver implemented in the Julia package DifferentialEquations.jl [54].

SDE model

The simple ODE model can be easily extended to the SDE model

d

(
m
p

)
t =

(
−δ · m(t)

k · m(t) − γ · p(t)

)
dt +

(√
δm(t) 0
0

√
k · m(t) + γ · p(t)

)
dBt

from [41], where Bt is a two-dimensional standard Brownian motion, m(t0) = 1 and p(0) = 0. To
compare the model to the previous one we take as observable mapping

y = log(scale · p + offset).

The priors assumed for the variables are

δ ∼ log N (−3, 5), scale ∼ log N (0, 5),
γ ∼ log N (−3, 5), t0 ∼ log N (0, 2),
k ∼ log N (−1, 5), offset ∼ log N (1, 5).

m0 ∼ log N (5, 5),

This SDE system is simulated based on a Euler-Maruyama scheme with a step size of 0.01 and using
just in time compilation from numba [55].

A.1.1 Multi-experiment setup

To increase parameter identifiability Fröhlich et al. introduced in [25] an experimental setup with
two distinct variants of eGFP that differ in their protein lifetime (here referred to as eGFP and
d2eGFP). The modeling assumption was that the two variants share all the parameters in the NLME
models, but the protein degradation rate γ. Thus, we have to distinct data sets DeGFP and DeGFP
for the two variants, respectively, and shared parameters θ, which leads to

p(D | θ̃) = p(DeGFP | θ, γeGFP) + p(Dd2eGFP | θ, γd2eGFP).

For our amortized approach, we could reuse the trained neural posterior estimator and only needed
to change the population model with respect to the shared parameters

ϕ(i)
γ = 1y(i)∈DeGFP

· γeGFP + 1y(i)∈Dd2eGFP
· γd2eGFP,

where the other entries of ϕ(i) are equal to the remaining mean parameters in θ.
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A.1.2 Synthetic data

The synthetic data set is generated by setting the population parameters to reasonable values based
on the results in [25] (see Table A1, A2 and A3) and then sampling random effects from a log-normal
distribution until the desired number of synthetic cells is generated. Since we know all cell-specific
parameters, we can compute the sample mean and covariance of the parameters, which are the
optimal values that we would like to recover.

Table A1: Population parameters of log-normal distribution for synthetic data of simple single-cell
NLME model.

parameter δ γ k · m0 · scale t0 offset σ

mean −0.694 −7.014 6.217 −0.164 2.079 −3.454
variance 0.941 7.014 0.004 0.116 0 0

Table A2: Population parameters of log-normal distribution for synthetic data of detailed single-cell
NLME model.

parameter δ1m0 δ2 e0m0 k2-m0-scale k2 k1m0 r0m0 γ t0 offset σ

mean −0.10144 −0.88443 −0.42549 13.81551 0.42143 0.97477 −3.50153 −6.91273 −0.34573 2.07944 −3.45388
variance 0.56752 0.74721 0.52594 0 0.44084 1.45996 2.3979 4.61512 0.48075 0 0

Table A3: Population parameters of log-normal distribution for synthetic data of the SDE single-cell
NLME model.

parameter δ γ k m0 scale t0 offset σ

mean −0.694 −7.014 0.027 5.704 0.751 −0.164 2.079 −3.454
variance 0.941 7.014 0.675 6 · 10−5 0 0.116 0 0
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A.1.3 Further analysis of the single-cell NLME models
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Figure A1: Confidence intervals for the single-cell models on synthetic data. Data was generated by
(A) the simple ODE model, (B) the detailed ODE model and, (C) the SDE model. Then parameters
and CIs (based on profile likelihoods) were estimated using the amortized approach to NLME models.
True parameters which are 0, are not shown.
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Figure A2: Fit for SDE NLME model on synthetic data. (A) Synthetic data describing single-cell
translation kinetics after mRNA transfection generated by the SDE NLME model. (B–C) Difference
of estimated population mean (B) and variance (C) over time of the SDE and ODE NLME model
on synthetic data generated by the SDE model.
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A.2 Specification of the pharmacokinetic model

Over the past two decades, many oral targeted therapies have been developed in the field of oncology,
many of which target the angiogenesis of neoplasms, which plays an important role in tumor
growth. However, angiogenesis inhibitors generally show high variability between patients, leading
to significant differences in exposure [5]. Therefore, pharmacokinetic (PK) modeling is required to
develop targeted dosing strategies for sub-populations or even in a personalized manner, discover
concentration thresholds for toxicity, investigate potential interactions, and guide study planning,
among other purposes. Sunitinib, an angiogenesis inhibitor, which belongs to the class of tyrosine
kinase inhibitors, was the subject of the population pharmacokinetic model, which is described in
more detail below: In the model developed by Diekstra et al. [42], the distribution of sunitinib is
described by a single compartment model, while for its metabolite SU12662, a two compartment
model was used. Presystemic metabolization was described according to the model by Yu et al.
[56] by a hypothetical enzyme compartment. The hypothetical compartment was parameterized as
follows, with QH being the calculated concentration:

CLIV =
ka · AD + QH · Ac,sunitinib

Vc,sunitinib

QH + CLsunitinib
.

ka denotes for the absorption rate constant while AD and Ac,sunitinib represent the amounts in the
dosing or central compartment, respectively. CLsunitinib and Vc,sunitinib denote the clearance and
volume of distribution of the central compartment of sunitinib in this equation.

The model includes the sex and weight of the patients as covariates. Each patient i received a
personal medication (DOSi) and was measured over a different period of time and at varying time
points. In the following, we present the model for each individual; therefore, the index i is removed.
The patient’s weight is normalized as follows

wt :=


83 if weight is missing and sex = 1
75 if weight is missing and sex = 0
weight else

, ASCL :=
(wt

70

)0.75
, ASV := wt

70 .

The parameters we want to estimate are θ ∈ R11
≥0, and η ∈ R4

≥0, which are incorporated in the ODE
model as follows:

ka = θ1 Q34 = θ7 · ASCL
V2 = Vc,sunitinib = θ2 · ASV · η1 V4 = Vp,SU12662 = θ8 · ASV

QH = θ3 · ASCL fm = θ9 · η4

CLsunitinib = θ4 · ASCL · η3 Q25 = θ10 · ASCL
CLSU12662 = θ5 · ASCL V5 = Vp,sunitinib = θ11 · ASV

V3 = Vc,SU12662 = θ6 · ASV · η2
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and

dAD

dt
= dA1

dt
= −kaA1 A1(0) = DOS

dAc,sunitinib
dt

= dA2
dt

= QH · CLIV − QH

V2
A2 − Q25

V2
A2 + Q25

V5
A5 A2(0) = 0

dAc,SU12662
dt

= dA3
dt

= fm · CLsunitinib · CLIV − CLM
V3

A3 − Q34
V3

A3 + Q34
V4

A4 A3(0) = 0

dAp,SU12662
dt

= dA4
dt

= Q34
V3

A3 − Q34
V4

A4 A4(0) = 0

dAp,sunitinib
dt

= dA5
dt

= Q25
V2

A2 − Q25
V5

A5 A5(0) = 0.

As in the baseline [42], we fix θ3 = 80, θ9 = 0.21, and θ11 = 588 to get comparable results.
Furthermore, whenever a patient takes medication (at tDOS

j ), we have

A1(tDOS
j ) = lim

t→tDOS
j

A1(t) + DOS.

As measurement function we apply

y2,3 = θ12,13 · ϵ1,2 +

0.001 if A2,3 < 0.001
log(A2,3) else,

where ϵ2,3 ∼ N (0, σ2). In [42], σ2 = 1 was also fixed. This ODE system is simulated using the
Rodas5P solver implemented in the Julia package DifferentialEquations.jl [54].
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A.3 Calibration of the neural posterior estimator

To train the neural posterior estimator, we use BayesFlow, a flexible workflow to estimate normalizing
flows with invertible neural networks [27]. Since all models describe trajectories over time, we chose
a long short-term memory (LSTM) network with 2d units as the basis of our summary network
with d such that the number of units is larger than the number of observations given by the model
and stacked coupling layers as an invertible neural network. For every model, multiple neural
posterior estimators were trained. We varied the number of coupling layers from 6 to 8, added
a 1d-convolutional layer on top of the LSTMs and a dense layer at the end. Training consists
of several epochs, and in each we generated 1000 batches of 128 simulations. Simulations can
be either generated before or during training. Depending on the simulation time of the model,
pre-simulation or online training is more efficient. We used online training for the simple ODE
model, while we generated simulation beforehand for the other models. Training was stopped earlier
if the loss calculated on a validation set did not improve any more. For the simple ODE model,
we set a maximum of 500 epochs and, for all other models, a maximum of 1000 epochs. The error
calculated on a validation set during training suggested convergence for all models (Supplement
Figure A3). Furthermore, we checked the convergence of the neural posterior estimators based on
their calibration plots, a diagnostic tool that comes with BayesFlow. Simulation-based calibration
is a method to detect systematic biases in any Bayesian posterior sampling method [32]. Incorrect
calibration can be seen by deviations from uniformity. All our estimators show no systematic bias
(Supplement Figure A4, A6). Furthermore, for the best estimators, we assessed the validity of the
individual-specific posteriors of the real data by comparing them with the posterior approximations
given by an MCMC approximation with adaptive parallel tempering implemented in PyPesto [33].
In particular, the bimodal distributions of the parameters δ and γ in the simple ODE model are
nicely recovered (Supplement Figure A5).

Figure A3: Exemplary loss during training of the simple ODE model.

28

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 23, 2023. ; https://doi.org/10.1101/2023.08.22.554273doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.22.554273
http://creativecommons.org/licenses/by/4.0/


(a) Simple ODE model

(b) Detailed ODE model

(c) SDE model

Figure A4: Simulation-based calibration plots of the individual posteriors for the (a) simple ODE, (b)
detailed ODE and (c) SDE models. Incorrect calibration can be seen by deviations from uniformity
(bars outside the gray area).
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(a) Simple ODE model
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(b) Detailed ODE model

Figure A5: Comparing individual-specific posteriors from a MCMC approximation and the neural
posterior estimator for a single real cell in the (a) simple and the (b) detailed ODE model.
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Figure A6: Calibration plot of the pharmacokinetic model.
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